资源资源简介:
商丘市虞城县2016年中考数学第二次模试卷含答案解析2016年河南省商丘市虞城县中考数学二模试卷一、选择题1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.国务院总理李克强在第十二届全国人大第四次政府工作报告中指出,2015年我国国内生产总值达到了67.7万亿元,67.7万亿元用科学记数法表示为()A.67.7×1012 B.6.77×1013 C.0.677×1014 D.6.77×10143.下列计算正确的是()A.a2oa3=a6 B.a2+a3=a5 C.(a2)3=a6 D.(﹣2x)3=﹣6x34.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为()A. B. C. D.5.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125° B.120° C.140° D.130°6.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y17.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.①② B.②③④ C.①②④ D.①②③④8.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B. C. D.二、填空题9.(﹣2)﹣1﹣+|﹣3|=.10.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.11.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.12.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为1﹕2,把△EFO缩小,则点E的对应点E′的坐标是.13.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.14.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的面积.15.如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE沿AE折叠,当点D的对应点刚好D落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.18.遵义市某中学为了搞好"创建全国文明城市"的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.19.如图,一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果精确到1m)20.如图,反比例函数y=(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,8)作AB垂直于x轴于点B,交反比例函数图象于点D,且AD=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上是否存在一点P,使点P到C、D两点距离之和PC+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.21.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,商品名称 甲 乙进价(元/件) 80 100售价(元/件) 160 240设其中甲种商品购进x件(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.22.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.23.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.2016年河南省商丘市虞城县中考数学二模试卷参考答案与试题解析一、选择题1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.国务院总理李克强在第十二届全国人大第四次政府工作报告中指出,2015年我国国内生产总值达到了67.7万亿元,67.7万亿元用科学记数法表示为()A.67.7×1012 B.6.77×1013 C.0.677×1014 D.6.77×1014【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.7万亿=67700000000000=6.77×1013,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a2oa3=a6 B.a2+a3=a5 C.(a2)3=a6 D.(﹣2x)3=﹣6x3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.【点评】本题考查了积的乘方,熟记法则并根据法则计算是解题关键.4.如图,由几个相同的小正方体搭成的一个几何体,它的左视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125° B.120° C.140° D.130°【考点】平行线的性质;直角三角形的性质.【分析】根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选D.【点评】本题考查了平行线性质,矩形性质,三角形外角性质的应用,关键是求出∠2=∠FCD和得出∠FCD=∠1+∠A.6.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.7.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.①② B.②③④ C.①②④ D.①②③④【考点】平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故选C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.8.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B. C. D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.【解答】解:设BE=x,FC=y,则AE2=x2+42,EF2=(4﹣x)2+y2,AF2=(4﹣y)2+42.又∵△AEF为直角三角形,∴AE2+EF2=AF2.即x2+42+(4﹣x)2+y2=(4﹣y)2+42,化简得:,再化为,很明显,函数对应A选项.故选:A.【点评】此题为动点函数问题,关键列出动点的函数关系,再判断选项.二、填空题9.(﹣2)﹣1﹣+|﹣3|=.【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣﹣2+3=.故答案为:.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.11.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为1﹕2,把△EFO缩小,则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).【考点】位似变换;坐标与图形性质.【分析】根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.【解答】解:∵顶点E的坐标是(﹣4,2),以原点O为位似中心相似比为1:2将△EFO缩小得到它的位似图形△E′F′O,∴点E′的坐标是:(×(﹣4),×2),[﹣×(﹣4),﹣×2],即(﹣2,1)或(2,﹣1).故答案为:(﹣2,1)或(2,﹣1).【点评】此题主要考查了位似图形的性质,根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k得出是解题关键.13.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的面积9π﹣12.【考点】翻折变换(折叠问题);扇形面积的计算.【分析】首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又在扇形OAB中,∠AOB=90°,半径OA=6,即可求得扇形OAB的面积,继而求得阴影部分面积.【解答】解:连接OD.根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=∠DBO=30°,∵∠AOB=90°,∴OC=OBotan∠CBO=6×=2,∴S△BDC=S△OBC=×OB×OC=×6×2=6,S扇形AOB=π×62=9π,∴整个阴影部分的面积为:S扇形AOB﹣S△BDC﹣S△OBC=9π﹣6﹣6=9π﹣12.故答案为:9π﹣12.【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.15.如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE沿AE折叠,当点D的对应点刚好D落在矩形ABCD的对称轴上时,则DE的长为或.【考点】翻折变换(折叠问题).【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.【点评】本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题(本大题共8个小题,满分75分)16.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=o=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【考点】切线的性质;正方形的性质;圆周角定理.【专题】证明题.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用"等角的余角相等解答.18.遵义市某中学为了搞好"创建全国文明城市"的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为400人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在C组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数.【分析】(1)根据A类人数是40,所占的百分比是10%,据此即可求得总人数;(2)根据百分比的定义求得B和E类的人数,从而完成条形统计图;(3)利用中位数的定义,就是大小处于中间位置的数即可作判断.(4)利用总人数乘以对应的百分比即可求解.【解答】解:(1)参加调查测试的学生总数是:40÷10%=400(人),故答案是:400;(2)B组的人数是:400×35%=140(人),则E组的人数是:400﹣40﹣140﹣120﹣80=20(人).;(3)中位数落在C组.故答案是:C;(4)全校学生测试成绩为优秀的总人数是:2600×(10%+35%)=1170(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,(1)求∠BPQ的度数;(2)求该电线杆PQ的高度.(结果精确到1m)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)作PQ⊥AB交AB的延长线于H,根据三角形的外角的性质计算;(2)设PQ=xm,根据正、余弦的定义表示出QH、BH,根据等腰直角三角形的性质列式计算即可.【解答】解:(1)作PQ⊥AB交AB的延长线于H,由题意得,∠QBH=30°,∠PBH=60°,∴∠BQH=60°,∠PBQ=30°,∴∠BPQ=∠BQH﹣∠PBQ=30°;(2)设PQ=xm,∵∠BPQ=∠PBQ,∴BQ=PQ=xm,∵∠QBH=30°,∴QH=BQ=x,BH=x,∵∠A=45°,∴6+x=xx,解得x=2+6≈9.答:该电线杆PQ的高度约为9m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,反比例函数y=(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,8)作AB垂直于x轴于点B,交反比例函数图象于点D,且AD=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上是否存在一点P,使点P到C、D两点距离之和PC+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)根据A坐标,以及AD=3BD求出D坐标,代入反比例解析式求出k的值;(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;(3)作C关于y轴的对称点C′,连接C′D交y轴于P,则P点即为所求,利用待定系数法求出直线C′D的解析式,进而可得出P点坐标.【解答】解:(1)∵A(2,8),∴AB=8,OB=2,∵AD=3BD,∴BD=2,∴D(2,2)将D坐标代入反比例解析式得:k=4;(2)∵由(1)知,k=4,∴反比例函数的解析式为y=,∴,解得x=±1.∵x>0,∴x=1,∴C(1,4);(3)作C关于y轴的对称点C′,连接C′D交y轴于P,则P点即为所求,∵C(1,4),∴C′(﹣1,4).设直线C′D的解析式为y=kx+b(k≠0),∵D(2,2),∴,解得,∴直线C′D的解析式为y=﹣x+,∴P(0,).【点评】此题考查的是反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键.21.某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,商品名称 甲 乙进价(元/件) 80 100售价(元/件) 160 240设其中甲种商品购进x件(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?(2)若设该商场售完这200件商品的总利润为y元.①求y与x的函数关系式;②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.【考点】一次函数的应用.【分析】(1)甲种商品购进x件,乙种商品购进了200﹣x件,由总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,可得出关于x的一元一次方程,解出方程即可得出结论;(2)①根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,即可得出y关于x的函数解析式;②根据总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据y关于x函数的单调性即可解决最值问题;(3)根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,可得出y关于x的函数解析式,分x的系数大于0、小于0以及等于0三种情况考虑即可得出结论.【解答】解:(1)甲种商品购进x件,乙种商品购进了200﹣x件,由已知得:80x+100(200﹣x)=17900,解得:x=105,200﹣x=200﹣105=95(件).答:购进甲种商品105件,乙种商品95件.(2)①由已知可得:y=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000(0≤x≤200).②由已知得:80x+100(200﹣x)≤18000,解得:x≥100,∵y=﹣60x+28000,在x取值范围内单调递减,∴当x=100时,y有最大值,最大值为﹣60×100+28000=22000.故该商场获得的最大利润为22000元.(3)y=(160﹣80+a)x+(240﹣100)(200﹣x),即y=(a﹣60)x+28000,其中100≤x≤120.①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大值,即商场应购进甲、乙两种商品各100件,获利最大.②当a=60时,a﹣60=0,y=28000,即商场应购进甲种商品的数量满足100≤x≤120的整数件时,获利都一样.③当60<x<70时,a﹣60>0,y岁x的增大而增大,∴当x=120时,y有最大值,即商场应购进甲种商品120件,乙种商品80件获利最大.【点评】本题考查了一次函数的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据数量关系找出y关于x的函数关系式;(3)根据一次函数的系数分类讨论.本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.22.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)利用SAS可证明△BAM≌△CAN,继而得出结论;(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到=,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.【解答】(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(2)解:结论∠ABC=∠ACN仍成立;理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)解:∠ABC=∠ACN;理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等(相似)的条件,利用全等(相似)的性质证明结论.23.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.【解答】方法(1):解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),∴AB=4,OA=3,OC=4,∴AC==5,∵当点P运动到B点时,点Q停止运动,AB=4,∴AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=|﹣x|,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0),说明点E在x轴的负半轴上;②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,1.当E在A点左边时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).2.当E在A点右边时,∵OA+AE=3+4=7,∴E(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).方法二:(1)略.(2)∵点P、Q同时从A点出发,都已每秒1个单位长度的速度分别沿AB,AC运动.过点Q作x轴垂线,垂足为H.∵A(3,0),C(0,4),∴lAC:y=x﹣4,∵点P运动到B点时,点Q停止运动,∴AP=AQ=4,∴QH=,Qy=﹣,代入LAC:y=x﹣4得,Qx=,则Q(,﹣),∵点E在x轴上,∴设E(a,0),∵A(3,0),Q(,﹣),△AEQ为等腰三角形,∴AE=EQ,AE=AQ,EQ=AQ,∴(a﹣3)2=(a﹣)2+(0+)2,∴a=﹣,(a﹣3)2=(3﹣)2+(0+)2,∴a1=7,a2=﹣1,(a﹣)2+(0+)2=(3﹣)2+(0+)2,∴a1=﹣,a2=3(舍)∴点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).(3)∵P,Q运动到t秒,∴设P(3﹣t,0),Q(3﹣t,﹣t),∴KPQ=,KPQ=﹣2,∵AD⊥PQ,∴KPQoKAD=﹣1,∴KAD=,∵A(3,0),∴lAD:y=x﹣,∵y=,∴x1=3(舍),x2=﹣,∴D(﹣,﹣),∵DY=QY,即﹣t=﹣,t=,DQ∥AP,DQ=AQ=AP,此时四边形APDQ的形状为菱形.【点评】本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。