资源资源简介:
免费菏泽市2018年中考数学猜题卷含答案试卷分析详解菏泽市2018年中考数学猜题卷及答案注意事项:1、本试卷满分120分,考试时间100分钟。2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。答在试卷上的答案无效。一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.-14的倒数是()A.4B.-14C.14D.-42.下列运算结果正确的是()A.a2+a3=a5B.a2·a3=a6C.a3÷a2=aD.(a2)3=a53.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为()A.9 B.11 C.13 D.164.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠35.如图所示的是三通管的立体图,则这个几何体的俯视图是()A. B. C. D.6.下列图形中,既是中心对称图形,又是轴对称图形的是()A.矩形 B.三角形 C.平行四边形 D.等腰梯形7.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65° B.60° C.55° D.45°8.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.129.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个10.如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B. C. D.二、填空题(每小题3分,共15分)11.我国是世界上13个贫水国之一,人均水资源占有量只有2520立方米,用科学记数法表示2520立方米是_____________立方米。12.已知:m、n为两个连续的整数,且m<<n,则m+n=.13.不等式组的最小整数解是.14.用扇形纸片制作一个圆锥的侧面,要求圆锥的高是3cm,底面周长是8πcm,则扇形的半径为cm.15.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.三、解答题(本大题共8个小题,满分75分)16.(本题满分6分)计算:+(﹣3)2﹣20180×|﹣4|+()﹣1.17.(本题满分7分)先化简,再求值:(1+)÷,其中x=+1.18.(本题满分10分)如图,在矩形ABCD中.点E在边AB上,∠CDE=∠DCE.求证:AE=BE.19.(本题满分10分)为了了解某校九年级(1)班学生的体育测试情况,对全班学生的体育成绩进行了统计,并绘制出以下不完整的频数分布表和扇形统计图A 36≤x<41 2B 41≤x<46 5C 46≤x<51 15D 51≤x<56 mE 56≤x<61 10(1)求全班学生人数和m的值;(2)该班学生的体育成绩的中位数落在哪个分数段内?(3)该班体育成绩满分共有3人,其中男生2人,女生1人,现从这3人中随机选取2人参加校运动会,求恰好选到一男一女生的概率20.(本题满分10分)某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?21.(本题满分10分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,求图中阴影部分的面积.22.(本题满分10分)(1)探究发现:下面是一道例题及其解答过程,请补充完整:如图①在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形∴∠APP′=60°PA=PP′PC=∵∠APB=150°∴∠BPP′=90°∴P′P2+BP2=即PA2+PB2=PC2(2)类比延伸:如图②在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA、PB、PC之间的数量关系,并证明.(3)联想拓展:如图③在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.23.(本题满分12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.参考答案:一、选择题(每小题3分,共30分)1.D2.C3.C4.C5.A6.A7.A8.D9.C10.B二、填空题(每小题3分,共15分)11.2.52×10312.713.014.515.y=﹣x2+6x﹣11.三、解答题(本大题共8个小题,满分75分)16.(本题满分6分)解:原式=2+9﹣1×4+6=13.17.(本题满分7分)解:(1+)÷===,当x=+1时,原式===.18.(本题满分10分)证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠CDE=∠DCE,∴DE=CE,在Rt△DAE和Rt△CBE中,,∴Rt△DAE≌Rt△CBE(HL),∴AE=BE.19.(本题满分10分)解:(1)全班学生人数:15÷30%=50(人),m=50﹣2﹣5﹣15﹣10=18;(2)中位数应是第25与26名学生成绩的平均数,所以中位数为51≤x<56内;(3)画树状图:, 所以共有6种结果,其中一男一女的结果有4种,所以P(一男一女)==.20.(本题满分10分)解:(1)设小王够买A品牌文具x套,够买B品牌文具y套,根据题意,得:,解得:,答:小王够买A品牌文具600套,够买B品牌文具400套.(2)y=500+0.8[20x+25]=500+0.8=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500.(3)根据题意,得:﹣4x+20500=20000,解得:x=125,∴小王够买A品牌文具套装为125套、够买B品牌文具套装为875套,设A品牌文具套装的售价为z元,则B品牌文具套装的售价为(z+5)元,由题意得:125z+875(z+5)≥20000+8×1000,解得:z≥23.625,答:A品牌的文具套装每套定价不低于24元时才不亏本.21.(本题满分10分)解:连接OC,∵AC=CD,∠ACD=120°,∴∠A=∠D=30°,∵OA=OC,∴∠ACO=∠A=30°,∴∠COD=60°∴∠OCD=180°﹣∠COD﹣∠D=90°∴OC⊥CD∴CD是⊙O的切线;(2)由(1)可知:∠COD=60°,∴S扇形BOC==在Rt△OCD中,tan60°=∴CD=4,∴S△OCD=OC×CD=8,∴阴影部分面积为:8﹣22.(本题满分10分)解:(1)PC=P′BP′P2+BP2=P′B2.(2)关系式为:2PA2+PB2=PC2证明如图②:将△APC绕A点逆时针旋转90°,得到△AP′B,连接PP′,则△APP′为等腰直角三角形∴∠APP′=45°PP′=PA,PC=P′B,∵∠APB=135°∴∠BPP′=90°∴P′P2+BP2=P′B2,∴2PA2+PB2=PC2(3)k=.证明:如图③将△APC绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,可得∠APP′=30°PP′=PA,PC=P′B,∵∠APB=60°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,∴(PA)2+PB2=PC2∵(kPA)2+PB2=PC2,∴k=.23.(本题满分12分)解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。