资源资源简介:
黄冈市2016年中考数学三模试卷含答案解析2016年湖北省黄冈市中考数学三模试卷一、选择题(共6小题,每小题3分,满分18分)1.﹣2016的绝对值是()A.﹣2016B.2016C.﹣D.2.下列运算正确的是()A.a2+a3=a5B.3a2o2a3=6a6C.(﹣a3)2=a6D.(a﹣b)2=a2﹣b23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.已知方程x2+kx﹣6=0的一个根是x=2,则它的另一个根为()A.x=1B.x=﹣2C.x=3D.x=﹣35.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.166.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)7.函数y=中,自变量x的取值范围是.8.因式分解:a3﹣9ab2=.9.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为m.10.方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线.11.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC中点,若DE=2,则AB的长为.12.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=.13.关于x的方程=﹣1无解,则m=.14.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=,则线段CE的最大值为.三、解答题(共10小题,满分78分)15.解不等式组并把解集在数轴上表示出来.16.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型"大学生自主创业"的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?17.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.18.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个"求助"没有用(使用"求助"可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用"求助",那么小明答对第一道题的概率是.(2)如果小明将"求助"留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用"求助".(直接写出答案)19.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.20.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.21.为响应我市创建国家文明城市的号召,我校举办了一次"包容天下,崛起江淮"主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀.这次竞赛中甲、乙两组学生(各10名学生)成绩的条形统计图如图.(1)补充完成下列的成绩统计分析表:组别 平均分 中位数 众数 方差 合格率 优秀率甲 6.7 6 3.41 90% 20%乙 7.1 7.5 1.69 80% 10%(2)小明同学说:"这次竞赛我得了7分,在我们小组中排名属中游略偏上!"观察上表可知,小明是组学生;(填"甲"或"乙")(3)从两个小组的整体情况来看,组的成绩更加稳定一些.(填"甲"或"乙")(4)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.22.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为"最佳视角点",作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°时,"最佳视角点"P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?24.如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围.2016年湖北省黄冈市中考数学三模试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.﹣2016的绝对值是()A.﹣2016B.2016C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.2.下列运算正确的是()A.a2+a3=a5B.3a2o2a3=6a6C.(﹣a3)2=a6D.(a﹣b)2=a2﹣b2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则、完全平方公式计算即可.【解答】解:A、a2与a3不是同类项,不能合并,故A错误;B、3a2o2a3=6a5,故B错误;C、(﹣a3)2=a6,正确,故C正确;D、(a﹣b)2=a2﹣2ab+b2,故D错误.故选;C.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形.不是中心对称图形,故错误.故选A.4.已知方程x2+kx﹣6=0的一个根是x=2,则它的另一个根为()A.x=1B.x=﹣2C.x=3D.x=﹣3【考点】根与系数的关系.【分析】设方程的另一个根为t,根据根与系数的关系得到2ot=﹣6,然后解t的一次方程即可.【解答】解:设方程的另一个根为t,根据题意得2ot=﹣6,解得t=﹣3,即方程的另一个根为﹣3.故选D.5.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.16【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BEC周长=AC+BC,再根据等腰三角形两腰相等可得AC=AB,代入数据计算即可得解.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.6.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.二、填空题(共8小题,每小题3分,满分24分)7.函数y=中,自变量x的取值范围是x≥2且x≠3.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥2且x≠3.故答案是:x≥2且x≠3.8.因式分解:a3﹣9ab2=a(a﹣3b)(a+3b).【考点】因式分解-提公因式法.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣9ab2=a(a2﹣9b2)=a(a﹣3b)(a+3b).故答案为:a(a﹣3b)(a+3b).9.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为2.5×10﹣6m.【考点】科学记数法-表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000025=2.5×10﹣6;故答案为2.5×10﹣6.10.方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1.【考点】抛物线与x轴的交点.【分析】由方程ax2+bx+c=0(a≠0)的两根得出抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标,再根据对称轴公式即可得出结果.【解答】解:∵方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,∴抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标为(﹣3,0)、(1,0),∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,即x=﹣1;故答案为:x=﹣1.11.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC中点,若DE=2,则AB的长为4.【考点】等腰三角形的性质;直角三角形斜边上的中线.【分析】根据垂线的性质推知△ADC是直角三角形;然后在直角三角形ADC中,利用直角三角形斜边上的中线是斜边的一半,求得AC=4;最后由等腰三角形ABC的两腰AB=AC,求得AB=4.【解答】解:∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=2,AB=AC,∴AB=4.故答案为:4.12.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=30°.【考点】垂径定理;圆周角定理.【分析】根据圆周角定理得到∠DAC的度数,根据垂径定理得到答案.【解答】解:∵∠COD=60°,∴∠DAC=30°,∵AD是⊙O的直径,弦BC⊥AD,∴=,∴∠BAD=∠DAC=30°,故答案为:30°.13.关于x的方程=﹣1无解,则m=﹣1或﹣.【考点】分式方程的解.【分析】先按照一般步骤解方程,用含m的代数式表示x,然后根据原方程无解,即最简公分母为0,求出m的值.【解答】解:化为整式方程得:3﹣2x﹣2﹣mx=3﹣x整理得x(1+m)=﹣2当此整式方程无解时,1+m=0即m=﹣1;当最简公分母x﹣3=0得到增根为x=3,当分式方程无解时,把增根代入,得m=﹣.故m=﹣1或﹣.14.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=,则线段CE的最大值为6.4.【考点】相似三角形的判定与性质.【分析】作AG⊥BC于G,如图,根据等腰三角形的性质得BG=CG,再利用余弦的定义计算出BG=8,则BC=2BG=16,设BD=x,则CD=16﹣x,证明△ABD∽△DCE,利用相似比可表示出CE=﹣x2+x,然后利用二次函数的性质求CE的最大值.【解答】解:作AG⊥BC于G,如图,∵AB=AC,∴BG=CG,∵∠ADE=∠B=α,∴cosB=cosα==,∴BG=×10=8,∴BC=2BG=16,设BD=x,则CD=16﹣x,∵∠ADC=∠B+∠BAD,即α+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,而∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=﹣x2+x=﹣(x﹣8)2+6.4,当x=8时,CE最大,最大值为6.4.三、解答题(共10小题,满分78分)15.解不等式组并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示不等式组的解集即可.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>0,∴不等式组的解集为:0<x≤2,在数轴上表示不等式组的解集为:.16.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型"大学生自主创业"的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据"今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同"建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.17.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.18.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个"求助"没有用(使用"求助"可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用"求助",那么小明答对第一道题的概率是.(2)如果小明将"求助"留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用"求助".(直接写出答案)【考点】列表法与树状图法.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用"求助"小明顺利通关的概率为:;如果在第二题使用"求助"小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用"求助",那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用"求助"小明顺利通关的概率为:;如果在第二题使用"求助"小明顺利通关的概率为:;∴建议小明在第一题使用"求助".19.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,∴C(2,6),∵反比例函数y=(x>O)经过点C,∴k=2×6=12;(2)S△BDC=DC×OD=×6×2=6;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,∵B(0,2),D(2,0),∴直线BD的解析式为y=﹣x+2,∴直线CP的解析式为y=﹣x+2+6=﹣x+8,解得或,∴P点坐标为(6,2).20.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.21.为响应我市创建国家文明城市的号召,我校举办了一次"包容天下,崛起江淮"主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀.这次竞赛中甲、乙两组学生(各10名学生)成绩的条形统计图如图.(1)补充完成下列的成绩统计分析表:组别 平均分 中位数 众数 方差 合格率 优秀率甲 6.7 5 6 3.41 90% 20%乙 7.1 7.5 8 1.69 80% 10%(2)小明同学说:"这次竞赛我得了7分,在我们小组中排名属中游略偏上!"观察上表可知,小明是甲组学生;(填"甲"或"乙")(3)从两个小组的整体情况来看,乙组的成绩更加稳定一些.(填"甲"或"乙")(4)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.【考点】方差;条形统计图;加权平均数;中位数;众数.【分析】(1)根据中位数是定义即可求得.(2)求出中位数即可判断,小明的成绩大于中位数.(3)根据方差即可判断.(4)可以从五个方面(平均分、中位数、众数、方差、合格率)回答.【解答】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8故答案分别为5,8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是5,∴小明在甲组.故答案为甲.(3)∵S=3,41,S=1.69∴>∴乙成绩稳定.故答案为乙.22.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为"最佳视角点",作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°时,"最佳视角点"P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用.【分析】(1)连结PO.先由线段垂直平分线的性质得出PO=PA=45cm,则OC=OB+BC=36cm,然后利用勾股定理即可求出PC==27cm;(2)过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.先解Rt△DOE,求出DE=DOosin60°=6,EO=DO=6,则FC=DE=6,DF=EC=EO+OB+BC=42.再解Rt△PDF,求出PF=DFotan30°=42×=14,则PC=PF+FC=14+6=20≈34.68>27,即可得出结论.【解答】解:(1)当PA=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=PA=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC==27cm;(2)当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO=AO=12,∴DE=DOosin60°=6,EO=DO=6,∴FC=DE=6,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF中,∵∠PDF=30°,∴PF=DFotan30°=42×=14,∴PC=PF+FC=14+6=20≈34.68>27,∴点P在直线PC上的位置上升了.23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【考点】二次函数的应用.【分析】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤<时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.24.如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线的解析式,令y=0解方程,求出点C的坐标;(2)如答图1所示,由△CEF∽△COA,根据比例式列方程求出OE的长度;(3)如答图2所示,若△DMN是等腰三角形,可能有三种情形,需要分类讨论;(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示.利用S=S正方形DEFG﹣S梯形MEDN﹣S△FJK求出S关于t的表达式.【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(0,3),B(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+x+3.令y=0,即﹣x2+x+3=0,解得x=6或x=﹣4,∵点C位于x轴正半轴上,∴C(6,0).(2)当正方形的顶点F恰好落在线段AC上时,如答图1所示:设OE=x,则EF=x,CE=OC﹣OE=6﹣x.∵EF∥OA,∴△CEF∽△COA,∴=,即=,解得x=2.∴OE=2.(3)存在满足条件的t.理由如下:如答图2所示,易证△CEM∽△COA,∴=,即=,得ME=2﹣t.过点M作MH⊥DN于点H,则DH=ME=2﹣t,MH=DE=2.易证△MHN∽△COA,∴=,即=,得NH=1.∴DN=DH+HN=3﹣t.在Rt△MNH中,MH=2,NH=1,由勾股定理得:MN=.当△DMN是等腰三角形时,分三种情况:①若DN=MN,则3﹣t=,解得t=6﹣2;②若DM=MN,则DM2=MN2,即22+(2﹣t)2=()2,解得t=2或t=6(不合题意,舍去);③若DM=DN,则DM2=DN2,即22+(2﹣t)2=(3﹣t)2,解得t=1.综上所述,当t=1或2或6﹣2时,△DMN是等腰三角形.(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示:设EF、DG分别与AC交于点M、N,由(3)可知:ME=2﹣t,DN=3﹣t.设直线BC的解析式为y=kx+b,将点B(2,3)、C(6,0)代入得:,解得,∴y=﹣x+.设直线BC与EF交于点K,∵xK=t+2,∴yK=﹣xK+=﹣t+3,∴FK=yF﹣yK=2﹣(﹣t+3)=t﹣1;设直线BC与GF交于点J,∵yJ=2,∴2=﹣xJ+,得xJ=,∴FJ=xF﹣xJ=t+2﹣=t﹣.∴S=S正方形DEFG﹣S梯形MEDN﹣S△FJK=DE2﹣(ME+DN)oDE﹣FKoFJ=22﹣[(2﹣t)+(3﹣t)]×2﹣(t﹣1)(t﹣)=﹣t2+2t﹣.过点G作GH⊥y轴于点H,交AC于点I,则HI=2,HJ=,∴t的取值范围是:2<t<.∴S与t的函数关系式为:S=﹣t2+2t﹣(2<t<).2016年6月30日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。