资源资源简介:
免费武汉市江岸区2017年中考数学模拟试卷考点分类汇编2017年中考数学模拟试卷一 、选择题:1.下列说法中错误的是()2.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠03.下列计算结果正确的是()A.a4oa2=a8 B.(a4)2=a6 C.(ab)2=a2b2 D.(a﹣b)2=a2﹣b24.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()5.一元二次方程x2+px-6=0的一个根为2,则p的值为()A.-1B.-2C.1D.26.已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.7.下图是一个由相同小正方体搭成的几何体的俯视图,若小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的主视图是()8.我区某一周的最高气温统计如下表:最高气温(℃) 13 15 17 18天数 1 1 2 3则这组数据的中位数与众数分别是()A.17,17 B.17,18 C.18,17 D.18,189.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°10.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:8二 、填空题:11.比较大小:____;.12.科学记数法-表示较大的数.据统计,全球每分钟约有8500000吨污水排入江河湖海,将8500000用科学记数法表示为吨.13.如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.14.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.15.已知一个一次函数,当x>0时,函数值y随着x的增大而减小,请任意写出一个符合以上条件的函数关系式.16.如图.在正方形ABCD中.对角线AC与BD相交于点O.E为BC上一点.CE=5.F为DE的中点/若△CEF的周长为18.则OF的长为.三 、解答题:17.解方程:(x﹣4)2=(5﹣2x)2.18.如图,E、A、C三点共线,AB∥CD,∠B=∠E,,AC=CD。求证:BC=ED。19.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.20.如图,已知双曲线y=kx-1经过点B(3,1),点A是双曲线第三象限上的动点,过B作BC⊥y轴,垂足为C,连接AC.(1)求k的值;(2)若△ABC的面积为6,求直线AB的解析式;(3)在(2)的条件下,写出反比例函数值大于一次函数值时x的取值范围.21.已知AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.(1)如图1,当C点运动到O点时,求PT的长;(2)如图2,当C点运动到A点时,连接PO、BT,求证:PO∥BT;(3)如图3,设PT=y,AC=x,求y与x的解析式并求出y的最小值.22.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距km.23.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,),将△OAB沿y轴翻折,得△OCB.(1)求OCB的度数;(2)动点P在线段CA上从点C向点A运动,PDBC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2.①设CP=a(a>0),用含a的代数式分别表示S1,S2;②直接写出当S1=S2时点P的坐标.24.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.(1)求点C的坐标;(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1?x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.①求该抛物线的顶点坐标;②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.参考答案1.C2.C.3.C4.D5.C6.C7.A8.B9.D10.A11.答案为:__>__;__<_12.答案为:8.5×106.13.答案为:0.75.14.答案为:3;15.答案为:y=﹣x+1.16.答案为:3.5.17.由原方程,得(x﹣4)2﹣(5﹣2x)2=0,(x﹣4﹣5+2x)(x﹣4+5﹣2x)=0,即(3x﹣9)(1﹣x)=0,解得x1=3,x2=1.18.证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,∠BAC=∠ECD,∠B=∠E,AC=CD.∴△ACB≌△CED(AAS),∴BC=ED.19.【解答】解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;(2)解:游戏公平,理由如下:列举所有可能:甲乙 1 2 31 3 12 3 23 2 1 由表可知甲获胜的概率=0.5,乙获胜的概率=0.5,所以游戏是公平的.20.21.22.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,则y乙=90x﹣90;(3)令y乙=240,得到x=,则甲与A地相距60×=220km,故答案为:(1)60;(3)22023.24.解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,-3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=-3x+t,则0+t=3,即t=3,∴y2=-3x+3,把A(x1,0)代入y2=-3x+3,则-3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1-x2=4,解得:x2=-3,则B(-3,0),代入y1=aa-b-3=09a+3b-3=0,解得:a=1b=-2,∴y1=x2-2x-3=(x-1)2-4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤-1;若c=-3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,y1向左平移n个单位后,则解析式为:y3=-(x+1+n)2+4,则当x≤-1-n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=-3x+3-n,要使平移后直线与P有公共点,则当x=-1-n,y3≥y4,即-(-1-n+1+n)2+4ax2+bx+3得,a+b+3=09a-3b+3=0,解得:a=-1b=-2,∴y1=-x2-2x+3=-(x+1)2+4,则当x≤-1时,y随x增大而增大.②若C(0,-3),即c=-3,把C(0,-3)代入y2=-3x+t,则0+t=-3,即t=-3,∴y2=-3x-3,把A(x1,0),代入y2=-3x-3,则-3x1-3=0,即x1=-1,∴A(-1,0),∵x1,x2异号,x1=-1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,-1-n)+3-n,得:n≤-1,∵n>0,∴n≤-1不符合条件,应舍去;②若c=-3,则y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n个单位后,则解析式为:y3=(x-1+n)2-4,则当x≥1-n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=-3x-3-n,要使平移后直线与P有公共点,则当x=1-n,y3≤y4,即(1-n-1+n)2-4≤-3(1-n)-3-n,解得:n≥1,综上所述:n≥1,2n2-5n=2(n-54)2-25/8,∴当n=54时,2n2-5n的最小值为:-25/8.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。