资源资源简介:
免费福州中学中考数学模拟试卷含答案解析中考数学要点试卷分类汇编解析网2016年福建省福州XX中学中考数学模拟试卷一、选择题:共12小题,每题3分,共36分,每小题只有一个正确的选项,请在答题卡的相应位置填涂.1.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为"全碳气凝胶"的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104 B.0.16×10﹣3 C.1.6×10﹣4 D.16×10﹣53.如图,能表示点到直线的距离的线段共有()A.2条 B.3条 C.4条 D.5条4.如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.5.一元二次方程(x+1)2+2016=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根6.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm7.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.168.函数y=|2x|的图象是()A. B. C. D.9.已知∠MON=36°,先以O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再以A为圆心,AB长为半径画弧,交ON于点C,度量∠ACO的度数为()A.36° B.72° C.108° D.180°10.甲、乙两名运动员在六次射击测试中的成绩如表(单位:环):甲的成绩 6 7 8 8 9 9乙的成绩 5 9 6 ★ 9 10如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为"★")可以是()A.6环 B.7环 C.8环 D.9环11.已知点N在x轴上,则点M(m,m2﹣2m+3)与点N的距离最小值为()A.1 B.2 C.3 D.12.如图,四边形ABCD中,AC=6,BD=8,AC与BD所夹锐角为60°,则四边形ABCD的面积为()A.12 B.12 C.24 D.24二、填空题:共6小题,每题4分,共24分.13.化简:=.14.使分式有意义的x的取值范围是.15.某情报站有A、B、C、D四种互不相同的密码,每周使用其中的一种密码,且每周都是以上周未使用的三种密码中等可能地随机选用一种,如果第1周使用A种密码,那么第3周也使用A种密码的概率是.16.已知矩形ABCD中,点A、B、D的坐标分别为(1,0),(2,2),(3,﹣1),则点C的坐标为.17.如图,菱形ABCD的对角线BD、AC的长分别为2,2,以点B为圆心的弧与AD、DC相切,则图中阴影部分的面积是.18.如图,双曲线y=在第一象限内的图象与等腰直角三角形OAB相交于C点和D点,∠A=90°,OA=1,OC=2BD,则k的值是.三、解答题:共9小题,满分90分.19.计算:()﹣1+4cos60°﹣|﹣3|+.20.化简:.21.如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:BC=DE.22.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?23.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).24.在平面直角坐标系中,已知A(,1),B(2,0),O(0,0),反比例函数y=的图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,点B与点D对应,试判断点D是否在该反比例函数的图象上.25.如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB,E是BC上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD=2,BE=EO,求BD的长.26.如图,等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),设BP=x,连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N.(1)求证:AM=AN;(2)当x为何值时,线段BM的长度最大;(3)当∠BAD=15°时,求x的值.27.在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)若点M在抛物线y=ax2﹣x+2的对称轴上,且∠AMC=45°,求点M的坐标.2016年福建省福州XX中学中考数学模拟试卷参考答案与试题解析一、选择题:共12小题,每题3分,共36分,每小题只有一个正确的选项,请在答题卡的相应位置填涂.1.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)【考点】有理数的混合运算.【分析】原式利用乘方的意义计算出结果,即可作出判断.【解答】解:(﹣3)2=9,A、原式=﹣9,不相等;B、原式=﹣6,不相等;C、原式=9,相等;D、原式=﹣6,不相等,故选C2.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为"全碳气凝胶"的固态材料密度仅每立方厘米0.00016克,数据0.00016用科学记数法表示应是()A.1.6×104 B.0.16×10﹣3 C.1.6×10﹣4 D.16×10﹣5【考点】科学记数法-表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00016=1.6×10﹣4,故选:C.3.如图,能表示点到直线的距离的线段共有()A.2条 B.3条 C.4条 D.5条【考点】点到直线的距离.【分析】首先熟悉点到直线的距离的概念:直线外一点到这条直线的垂线段的长度,即为点到直线的距离.【解答】解:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.4.如图,数轴上表示的是下列哪个不等式组的解集()A. B. C. D.【考点】在数轴上表示不等式的解集.【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.【解答】解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥﹣3,A、不等式组的解集为x>﹣3,故A错误;B、不等式组的解集为x≥﹣3,故B正确;C、不等式组的解集为x<﹣3,故C错误;D、不等式组的解集为﹣3<x<5,故D错误.故选:B.5.一元二次方程(x+1)2+2016=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根【考点】根的判别式.【分析】先将方程整理成一般形式,再求出判别式△的值即可判断.【解答】解:一元二次方程(x+1)2+2016=0即为x2+2x+2017=0,∵△=4﹣4×1×2017<0,∴原方程无实数根.故选D.6.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点.若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm【考点】轴对称的性质.【分析】连结PG、PH,如图,根据轴对称的性质得OM垂直平分PG,ON垂直平分PH,则根据线段垂直平分线的性质得AP=AG,BP=BH,于是利用等线段代换可得△PAB的周长=GH=10cm.【解答】解:连结PG、PH,如图,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴OM垂直平分PG,ON垂直平分PH,∴AP=AG,BP=BH,∴△PAB的周长=AP+AB+BP=AG+AB+BH=GH=10cm.故选B.7.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3 B.4 C.12 D.16【考点】由三视图判断几何体.【分析】根据物体的主视图与俯视图可以得出,物体的长与高以及长与宽,进而得出左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.则左视图面积=1×3=3,故选:A.8.函数y=|2x|的图象是()A. B. C. D.【考点】正比例函数的图象.【分析】根据绝对值的意义进行讨论判断即可.【解答】解:函数y=|2x|,当x≥0时,y=2x;当x≤0时,y=﹣2x,故图象C符合,故选C9.已知∠MON=36°,先以O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再以A为圆心,AB长为半径画弧,交ON于点C,度量∠ACO的度数为()A.36° B.72° C.108° D.180°【考点】作图-基本作图;等腰三角形的性质.【分析】先根据题意画出图形,再根据根据等腰三角形的性质,求得∠ACB=∠ABC=72°,进而得到∠ACO=180°﹣72°=108°.【解答】解:如图所示,∵AO=BO,∠AOB=36°,∴△AOB中,∠ABC=72°,∵AB=AC,∴△ABC中,∠ACB=∠ABC=72°,∴∠ACO=180°﹣72°=108°.故选:C.10.甲、乙两名运动员在六次射击测试中的成绩如表(单位:环):甲的成绩 6 7 8 8 9 9乙的成绩 5 9 6 ★ 9 10如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为"★")可以是()A.6环 B.7环 C.8环 D.9环【考点】中位数.【分析】先求得甲测试成绩的中位数,再设乙第四次射击的成绩为x,根据两人测试成绩的中位数相同,列出关于x的方程进行求解即可.【解答】解:甲测试成绩的中位数=(8+8)÷2=8,∵两人测试成绩的中位数相同,∴乙测试成绩的中位数也是8,设乙第四次射击的成绩为x,则(9+x)÷2=8,解得x=7.故选(B)11.已知点N在x轴上,则点M(m,m2﹣2m+3)与点N的距离最小值为()A.1 B.2 C.3 D.【考点】点的坐标.【分析】先利用二次函数的最值问题求出点M到x轴的最小距离,再根据垂线段最短解答.【解答】解:∵m2﹣2m+3=(m2﹣2m+1)+2=(m﹣1)2+2,∴点M到x轴的最小距离为2,∵点N在x轴上,∴由垂线段最短可知MN的最小值为2.故选B.12.如图,四边形ABCD中,AC=6,BD=8,AC与BD所夹锐角为60°,则四边形ABCD的面积为()A.12 B.12 C.24 D.24【考点】解直角三角形.【分析】作AE⊥BD于E,CF⊥BD于F,由于AC、BD夹角为θ,所以AE=OAosinθ,CF=OCosinθ,根据S四边形ABCD=S△ABD+S△BDC=BDoAE+BDoCF=BDo(AE+CF)可以求出面积.【解答】作AE⊥BD于E,CF⊥BD于F,由于AC、BD夹角为θ,所以AE=OAosin60°,CF=OCosin60°,∴S四边形ABCD=S△ABD+S△BDC=BDoAE+BDoCF=BDo(AE+CF)=×8×6×sin60°=12.故选:B.二、填空题:共6小题,每题4分,共24分.13.化简:=.【考点】分式的加减法.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣=.故答案为:.14.使分式有意义的x的取值范围是x≠1.【考点】分式有意义的条件.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.15.某情报站有A、B、C、D四种互不相同的密码,每周使用其中的一种密码,且每周都是以上周未使用的三种密码中等可能地随机选用一种,如果第1周使用A种密码,那么第3周也使用A种密码的概率是.【考点】概率公式.【分析】由题意可得,第n+1周也使用A种密码的概率Pn+1=Pno,得出P2=0,P3=.【解答】解:第一周使用A,第二周使用A的概率P2=0,第三周使用A的概率P3=;故答案为:.16.已知矩形ABCD中,点A、B、D的坐标分别为(1,0),(2,2),(3,﹣1),则点C的坐标为(4,1).【考点】矩形的性质;坐标与图形性质.【分析】先根据题意画出图形,再用待定系数法求出直线AB解析式,进而利用矩形的性质求出直线CD解析式,同理求出直线BC解析式,最后联立解方程组即可.【解答】解:如图,设直线AB解析式为y=kx+b,∵A(1,0),B(2,2),∴,∴,∴直线AB解析式为y=2x﹣2,∵四边形ABCD是矩形,∴设直线CD解析式为y=2x+b'①∵D(3,﹣1),∴6+b'=﹣1,∴b'=﹣7,∴直线CD解析式为y=2x﹣7,同理:直线BC解析式为y=﹣x+3②联立①②解得,x=4,y=1,∴C(4,1),故答案为(4,1).17.如图,菱形ABCD的对角线BD、AC的长分别为2,2,以点B为圆心的弧与AD、DC相切,则图中阴影部分的面积是2﹣π.【考点】扇形面积的计算;菱形的性质.【分析】连接AC、BD、BE,在Rt△AOB中可得∠BAO=30°,∠ABO=60°,在Rt△ABE中求出BE,得出扇形半径,由菱形面积减去扇形面积即可得出阴影部分的面积.【解答】解:连接AC、BD、BE,∵四边形ABCD是菱形,∴AC与BD互相垂直且平分,∴AO=,BO=1,∵tan∠BAO=,tan∠ABO=,∴∠BAO=30°,∠ABO=60°,∴AB=2,∠BAE=60°,∵以B为圆心的弧与AD相切,∴∠AEB=90°,在Rt△ABE中,AB=2,∠BAE=60°,∴BE=ABsin60°=,∴S菱形﹣S扇形=×2×2﹣=2﹣π.故答案为:2﹣π.18.如图,双曲线y=在第一象限内的图象与等腰直角三角形OAB相交于C点和D点,∠A=90°,OA=1,OC=2BD,则k的值是.【考点】反比例函数图象上点的坐标特征.【分析】作CE⊥OB于E,DP⊥OB于P,设OC=2x,则BD=x,根据等腰直角三角形的性质求得点D、C的坐标,再根据k=xy,列出关于x的方程,从而求得反比例函数的解析式;【解答】解:作CE⊥OB于E,DP⊥OB于P,设OC=2x,则BD=x,∴C(2xo,2xo),D(﹣x,x),∵C、D都在反比例函数的图象上,∴(x)2=(﹣x)x,解得x=,∴k=(×)2=.故答案为.三、解答题:共9小题,满分90分.19.计算:()﹣1+4cos60°﹣|﹣3|+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方、乘法,然后从左向右依次计算,求出算式()﹣1+4cos60°﹣|﹣3|+的值是多少即可.【解答】解:()﹣1+4cos60°﹣|﹣3|+=﹣2+4×﹣3+3=﹣2+2﹣3+3=020.化简:.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==x.21.如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.【解答】证明:∵AB∥EC,∴∠BAC=∠DCE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴BC=DE.22.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?【考点】二元一次方程组的应用.【分析】设A服装成本为x元,B服装成本y元,由题意得等量关系:①成本共500元;②共获利130元,根据等量关系列出方程组,再解即可.【解答】解:设A服装成本为x元,B服装成本y元,由题意得:,解得:,答:A服装成本为300元,B服装成本200元.23.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A是36°,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)如图,C有:200﹣20﹣80﹣40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:=.24.在平面直角坐标系中,已知A(,1),B(2,0),O(0,0),反比例函数y=的图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,点B与点D对应,试判断点D是否在该反比例函数的图象上.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【分析】(1)根据反比例函数y=的图象经过点A(,1),可以求得k的值;(2)根据题目中信息可以画出旋转后的图形,然后求出点D的坐标,即可判断点D是否在该函数的图象上,本题得以解决.【解答】解:(1)∵反比例函数y=的图象经过点A(,1),∴,得k=,即k的值是;(2)∵B(2,0)∴OB=2又∵△AOB绕点O逆时针旋转60°得到△COD∴OD=OB=2,∠BOD=60°,如右图所示,过点D作DE⊥x轴于点E,在Rt△DOE中,OE=ODocos60°=,DE=ODosin60°=,∴D点坐标是(1,),由(1)知,反比例函数的解析式,当x=1时,,∴点D(1,)在该反比例函的图象上.25.如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB,E是BC上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD=2,BE=EO,求BD的长.【考点】切线的判定.【分析】(1)连接OD,如图1所示,由OD=OC,根据等边对等角得到一对角相等,再由∠DOB为△COD的外角,利用三角形的外角等于与它不相邻的两个内角之和,等量代换可得出∠DOB=2∠DCB,又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中两锐角互余,等量代换可得出∠B与∠ODB互余,即OD垂直于BD,确定出AB为圆O的切线,得证;(2)过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,进而确定出∠DOB=60°,又OD=OC,利用等边对等角得到一对角相等,再由∠DOB为三角形DOC的外角,利用外角的性质及等量代换可得出∠DCB=30°,在三角形CMO中,根据30°角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,进而确定出OD及OB的长,利用勾股定理即可求出BD的长【解答】(1)证明:连接OD,如图所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)过点O作OM⊥CD于点M,∵OD=OE=BE=BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,CM=CD=,∴OC=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=2.26.如图,等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),设BP=x,连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N.(1)求证:AM=AN;(2)当x为何值时,线段BM的长度最大;(3)当∠BAD=15°时,求x的值.【考点】三角形综合题.【分析】(1)由已知条件可以得出AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,从而得出∠DAM=∠PAN,可以得出△ADM≌△APN,就可以得出结论.(2)首先证得△BPM∽△CAP,然后由相似三角形的对应边成比例,求得BM=﹣x2+x,继而求得答案.(3)首先连接DE,分别交AB,AC于点G,H,连接PG,由∠BAD=15°,由∠DAP=60°可以得出∠PAG=45°.由已知条件可以得出四边形ADPE是菱形,就有DO垂直平分AP,得到GP=AG,就有∠PAG=∠APG=45°,得出∠PGA=90°,设BG=t,在Rt△BPG中∠APG=60°,就可以求出BP=2t,PG=t,从而求得t的值,即可以求出结论.【解答】解:(1)证明:∵△ABC、△APD和△APE是等边三角形,∴AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,∴∠DAM=∠PAN.在△ADM和△APN中,∵,∴△ADM≌△APN(ASA),∴AM=AN.(2)∵△ABC、△ADP是等边三角形,∴∠B=∠C=∠DAP=∠BAC=60°,∴∠DAM=∠PAC,∵∠ADM=∠B,∠DMA=∠BMP,∴180°﹣∠ADM﹣∠DMA=180°﹣∠B﹣∠BMP,∴∠DAM=∠BPM,∴∠BPM=∠NAP,∴△BPM∽△CAP,∴=,∵等边△ABC的边长为2,BP=x,∴CP=2﹣x,CA=2,∴,∴BM=﹣x2+x=﹣(x﹣1)2+,∴当x=1时,线段BM的长度最大;(3)如图,连接DE,分别交AB,AC于点G,H,连接PG,∵∠BAD=15°,∵∠DAP=60°,∴∠PAG=45°.∵△APD和△APE是等边三角形,∴四边形ADPE是菱形,∴DO垂直平分AP,∴GP=AG,∴∠PAG=∠APG=45°,∴∠PGA=90°.设BG=t,在Rt△BPG中,∠ABP=60°,∴BP=2t,PG=t,∴AG=PG=t,∴t+t=2,解得t=﹣1,∴x=2t=2﹣2.27.在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)若点M在抛物线y=ax2﹣x+2的对称轴上,且∠AMC=45°,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据解析式即可求得C点的坐标,应用待定系数法,求得a,然后令y=0,解方程即可求得A的坐标.(2)如图2中,依据三角形全等即可P、Q两点的坐标;(3)如图2中,连接QC、PA交于点K,以K为圆心KC为半径画圆交对称轴于M(点M在AC上方),此时∠AMC=∠AKC=45°;如图3中,点K关于直线AC的对称点为K′,以K′为圆心KC为半径画圆交对称轴于M(点M在AC下方),此时∠AMC=∠AK′C=45°,分别利用两点之间的距离公式列出方程即可解决问题.【解答】解:(1)把B(1,0)代入抛物线y=ax2﹣x+2,得a﹣+2=0,解得a=﹣.所以y=﹣x2﹣x+2,当x=0时,y=2,所以抛物线与y轴交点C的坐标为(0,2).当y=0时,﹣x2﹣x+2=0,解得x1=1,x2=﹣3,所以抛物线与x轴的另一个交点A的坐标为(﹣3,0);(2)如图1中,过P点作PE⊥y轴于E,过点Q作QF⊥x轴于F.∵四边形ACPQ是正方形,∴AC=CP=AQ,∠QAC=∠ACP=90°,∴∠ACO+∠PCE=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠OAC=∠PCE,在△AOC与△PCE中,,∴△AOC≌△PCE(AAS),∴PE=OC=2,CE=AO=3,∴OE=OC+CE=5,∴点P的坐标为(﹣2,5).同理△AOC≌△QFA,∴QF=AO=3,AF=OC=2,∴OF=AF+OA=5,∴点Q的坐标为(﹣5,3);(3)如图2中,连接QC、PA交于点K,以K为圆心KC为半径画圆交对称轴于M(点M在AC上方),此时∠AMC=∠AKC=45°设点M(﹣1,m),∵点K(﹣,),KC=,∴(﹣1+)2+(m﹣)2=,解得m=或(舍弃),∴点M坐标(﹣1,).如图3中,点K关于直线AC的对称点为K′,以K′为圆心KC为半径画圆交对称轴于M(点M在AC下方),此时∠AMC=∠AK′C=45°∵点K′(﹣,﹣),∴(﹣1+)2+(m+)2=,解得m=﹣3或2(舍弃),∴点M坐标(﹣1,﹣3),综上所述满足条件的点M坐标(﹣1,)或(﹣1,﹣3).2017年3月21日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。