资源资源简介:
汕头市龙湖区2016年中考数学三模试卷含答案解析2016年广东省汕头市龙湖区中考数学一模试卷一、选择题1.﹣3的倒数为()A.﹣ B. C.3 D.﹣32.下列计算正确的是()A.3a+2a=6a B.a2+a3=a5 C.a6÷a2=a4 D.(a2)3=a53.某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为()A.5.28×106 B.5.28×107 C.52.8×106 D.0.528×1074.下列图形既是中心对称又是轴对称图形的是()A. B. C. D.5.如图是由四个小正方体叠成的一个几何体,它的左视图是()A. B. C. D.6.某校男子足球队的年龄分布情况如下表:年龄(岁) 13 14 15 16 17 18人数 2 6 8 3 2 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,14 C.16,15 D.14,157.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.78.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.9.不等式组的解集是()A.x>1 B.x<2 C.1≤x≤2 D.1<x<210.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°二、填空题11.分解因式:2m2﹣2=.12.如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为.13.分式方程的解是.14.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.15.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B.若∠ABP=33°,则∠P=°.16.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.三、解答题17.计算:+﹣4sin60°+|﹣|18.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.19.如图,已知线段AB.(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.四、解答题20.先化简,再求值:(﹣)÷,其中a=1﹣,b=1+.21.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.22.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.五、解答题23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.24.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tanA=,求⊙O的半径.25.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.2016年广东省汕头市龙湖区中考数学一模试卷参考答案与试题解析一、选择题1.﹣3的倒数为()A.﹣ B. C.3 D.﹣3【考点】倒数.【专题】存在型.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.下列计算正确的是()A.3a+2a=6a B.a2+a3=a5 C.a6÷a2=a4 D.(a2)3=a5【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方、同底数幂的乘法、同类项和同底数幂的除法计算即可.【解答】解:A、3a+2a=5a,错误;B、a2与a3不能合并,错误;C、a6÷a2=a4,正确;D、(a2)3=a6,错误;故选C.【点评】此题考查幂的乘方、同底数幂的乘法、同类项和同底数幂的除法,关键是根据法则进行计算.3.某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为()A.5.28×106 B.5.28×107 C.52.8×106 D.0.528×107【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5280000=5.28×106,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n的值.4.下列图形既是中心对称又是轴对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.如图是由四个小正方体叠成的一个几何体,它的左视图是()A. B. C. D.【考点】简单组合体的三视图.【专题】计算题.【分析】从左边看几何体得到左视图即可.【解答】解:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选:A.【点评】此题考查了简单组合体的三视图,左视图即为从左边看得到的试图.6.某校男子足球队的年龄分布情况如下表:年龄(岁) 13 14 15 16 17 18人数 2 6 8 3 2 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,14 C.16,15 D.14,15【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15.故选A.【点评】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.7.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:C.【点评】此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.8.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.【考点】概率公式.【分析】利用黄球的个数除以球的总个数即可得到答案.【解答】解:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是=.故选B.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:所求情况数与总情况数之比.9.不等式组的解集是()A.x>1 B.x<2 C.1≤x≤2 D.1<x<2【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选D.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.10.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°【考点】解直角三角形的应用.【分析】因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,分别求出∠CAB,∠C′AB′,然后可以求出∠C′AC,即求出了鱼竿转过的角度.【解答】解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.【点评】此题中BC、B′C′都是我们所要求角的对边,而AC是斜边,所以本题利用了正弦的定义.解本题的关键是把实际问题转化为数学问题.二、填空题11.分解因式:2m2﹣2=2(m+1)(m﹣1).【考点】提公因式法与公式法的综合运用.【专题】压轴题.【分析】先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣2,=2(m2﹣1),=2(m+1)(m﹣1).故答案为:2(m+1)(m﹣1).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.12.如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为73°.【考点】平行线的性质.【分析】由平行线的性质得出∠ABC=∠C=27°,再由三角形的外角性质得出∠AEC=∠A+∠ABC=73°即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=27°,∴∠AEC=∠A+∠ABC=46°+27°=73°;故答案为:73°.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.13.分式方程的解是x=9.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是"转化思想",把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为8.【考点】三角形三边关系.【分析】首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.15.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B.若∠ABP=33°,则∠P=24°.【考点】切线的性质.【分析】连接OA,根据切线的性质得出OA⊥AP,利用圆心角和圆周角的关系解答即可.【解答】解:连接OA,如图:∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠ABP=33°,∴∠AOP=66°,∴∠P=90°﹣66°=24°.故答案为:24.【点评】此题考查切线的性质,关键是根据切线的性质得出OA⊥AP,再利用圆心角和圆周角的关系解答.16.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】有理数的乘方.【专题】压轴题;规律型.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+…+52015,则5M=5+52+53+54…+52016,两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.三、解答题17.计算:+﹣4sin60°+|﹣|【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整数指数幂、零指数幂、特殊角的三角函数值、绝对值、二次根式化简几个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+﹣4sin60°+|﹣|=﹣3+1﹣4×+2=﹣3+1﹣2+2=﹣2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可设小路的宽为xm,将4块种植地平移为一个长方形,长为(40﹣x)m,宽为(32﹣x)m.根据长方形面积公式即可求出小路的宽.【解答】解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.【点评】本题考查了一元二次方程的应用,应熟记长方形的面积公式.另外求出4块种植地平移为一个长方形的长和宽是解决本题的关键.19.如图,已知线段AB.(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.【考点】作图-基本作图;线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的方法作图即可;(2)根据线段垂直平分线的性质可得AM=BM,AN=BN,再根据等边对等角可得∠MAB=∠MBA,∠NAB=∠NBA,进而可得∠MAN=∠MBN.【解答】解:(1)如图所示:(2)∵l是AB的垂直平分线,∴AM=BM,AN=BN,∴∠MAB=∠MBA,∠NAB=∠NBA,∴∠MAB﹣∠NAB=∠MBA﹣∠NBA,即:∠MAN=∠MBN.【点评】此题主要考查了线段垂直平分线的作法以及性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.四、解答题20.先化简,再求值:(﹣)÷,其中a=1﹣,b=1+.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=o=o=﹣,当a=1﹣,b=1+时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E,F,并且DE=DF.求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】首先利用已知条件和平行四边形的性质判定△ADE≌△CDF,再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.【解答】证明:在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质以及菱形的判定方法,解题的关键是熟练掌握各种图形的判定和性质.22.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图.【专题】计算题.【分析】(1)根据频数分布直方图得到80≤x<90范围的人数最多;(2)用60≤x<70的人数除以总人数得到该组所占的百分比,然后用圆的面积乘以这个百分比即可得到成绩在60≤x<70的人数对应的扇形面积;(3)先画出树状图展示所有12种等可能的结果数,再找出有C的结果数,然后根据概率公式求解.【解答】解:(1)成绩x在80≤x<90范围的人数最多,有9人;(2)成绩在60≤x<70的人数对应的扇形面积=×πo22=π;(3)50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小李用C表示),画树状图为:共有12种等可能的结果数,其中有C的结果数为6,所以小李被选中的概率=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和频率分布直方图.五、解答题23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【考点】抛物线与x轴的交点;轴对称-最短路线问题.【分析】(1)根据题意得出关于a、b、c的方程组,求得a、b、c的值,即可得出抛物线的解析式,根据抛物线的对称性得出点B的坐标,再设出直线BC的解析式,把点B、C的坐标代入即可得出直线BC的解析式;(2)点A关于对称轴的对称点为点B,连接BC,设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小,再求得点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).【点评】本题考查了抛物线与x轴的交点问题,轴对称﹣最短路线问题,求得抛物线的解析式和直线的解析式是解题的关键.24.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tanA=,求⊙O的半径.【考点】切线的判定.【专题】证明题.【分析】(1)连接DO,BD,如图,由于∠BDE=∠A,∠A=∠ADO,则∠ADO=∠EDB,再根据圆周角定理得∠ADB=90°,所以∠ADO+∠ODB=90°,于是得到∠ODB+∠EDB=90°,然后根据切线的判定定理可判断DE为⊙O的切线;(2)利用等角的余角相等得∠ABD=∠EBD,加上BD⊥AC,根据等腰三角形的判定方法得△ABC为等腰三角形,所以AD=CD=AC=8,然后在Rt△ABD中利用正切定义可计算出BD=6,再根据勾股定理计算出AB,从而得到⊙O的半径.【解答】解:(1)DE与⊙O相切.理由如下:连接DO,BD,如图,∵∠BDE=∠A,∠A=∠ADO,∴∠ADO=∠EDB,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ODB+∠EDB=90°,即∠ODE=90°,∴OD⊥DE,∴DE为⊙O的切线;(2)∵∠BDE=∠A,∴∠ABD=∠EBD,而BD⊥AC,∴△ABC为等腰三角形,∴AD=CD=AC=8,在Rt△ABD中,∵tanA==,∴BD=×8=6,∴AB==10,∴⊙O的半径为5.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了解直角三角形.25.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.【考点】相似形综合题.【专题】压轴题.【分析】(1)解一元二次方程x2﹣12x+36=0,求出两根即可得到点A,C的坐标;(2)过点B作BE⊥AC,垂足为E,由∠BAC=45°可知AE=BE,设BE=x,用勾股定理可得CE=,根据AE+CE=OA+OC,解方程求出BE,再由AE﹣OA=OE,即可求出点B的坐标,然后求出k的值;(3)分类讨论,根据相似三角形对应边成比例求出点P的坐标.【解答】解:(1)解一元二次方程x2﹣12x+36=0,解得:x1=x2=6,∴OA=OC=6,∴A(﹣6,0),C(6,0);(2)如图1,过点B作BE⊥AC,垂足为E,∵∠BAC=45°,∴AE=BE,设BE=x,∵BC=4,∴CE=,∵AE+CE=OA+OC,∴x+=12,整理得:x2﹣12x+32=0,解得:x1=4(不合题意舍去),x2=8∴BE=8,OE=8﹣6=2,∴B(2,8),把B(2,8)代入y=,得k=16.(3)存在.如图2,若点P在OD上,若△PDB∽△AOP,则,即解得:OP=2或OP=6∴P(0,2)或P(0,6);如图3,若点P在OD上方,△PDB∽△AOP,则,即,解得:OP=12,∴P(0,12);如图4,若点P在OD上方,△BDP∽△AOP,则,即,解得:OP=4+2或OP=4﹣2(不合题意舍去),∴P(0,4+2);如图5,若点P在y轴负半轴,△PDB∽△AOP,则,即,解得:OP=﹣4+2或﹣4﹣2(不合题意舍去),则P点坐标为(0,4﹣2)∴点P的坐标为:(0,2)或(0,6)或(0,12)或(0,4+2)或(0,4﹣2).【点评】本题主要考查了一元二次方程的解法、点的坐标、点在图象上、相似三角形的判定与性质以及分类讨论的数学思想方法的综合运用,第3小题是难点,通过相似三角形的性质分类讨论列出比例式是解决问题的关键.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。