资源资源简介:
济南市2016年中考数学三模试卷含答案解析山东省济南市2016年中考数学三模试卷(解析版)参考答案与试题解析一、选择题(本大题共15小题,每小题3分,满分45分,在每小题给出的四个选项中,只有一个是符合题意的)1.2的倒数是()A.2B.﹣2C.D.﹣【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.将数字86400用科学记数法表示为()A.8.64×105B.8.64×104C.86.4×103D.864×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:86400=8.64×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°【分析】根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD的度数.【解答】解:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选:D.【点评】本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时) 0 1 2 3 4人数(人) 2 2 3 1 1A.3,2.5B.1,2C.3,3D.2,2【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列.数据2小时出现了三次最多为众数;2处在第5位为中位数.所以本题这组数据的中位数是2,众数是2.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.下列计算正确的是()A.﹣x3+3x3=2x3B.x+x=x2C.x3+2x5=3x3D.x5﹣x4=x【分析】根据合并同类项的法则逐项运算即可.【解答】解:A.﹣x3+3x3=(﹣1+3)x3=2x3,所以此选项正确;B.x+x=2x,所以此选项错误;C.x3与2x5不是同类项,所以不能合并,所以此选项错误;D.x5与x4不是同类项,所以不能合并,所以此选项错误;故选A.【点评】本题主要考查了合并同类项的运算法则,注意"同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变."是解答此题的关键.7.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11B.13C.11或13D.11和13【分析】利用因式分解法求出方程的解得到第三边长,即可求出此时三角形的周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4,当x=2时,三边长为2,3,6,不能构成三角形,舍去;当x=4时,三边长分别为3,4,6,此时三角形周长为3+4+6=13.故选B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.8.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.【分析】找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选B.【点评】难点是构造相应的直角三角形利用勾股定理求得∠ABC所在的直角三角形的斜边长,关键是理解余弦等于邻边比斜边.9.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0B.y2>y1>0C.y1<y2<0D.y2<y1<0【分析】分别把点P1(1,y1)和P2(2,y2)代入反比例函数求出y1,y2的值,再比较出其大小即可.【解答】解:∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>0.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知"小于向左,大于向右"是解答此题的关键.11.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2D.2+2【分析】要求△BDE周长的最小值,就要求DE+BE的最小值.根据勾股定理即可得.【解答】解:过点B作BO⊥AC于O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小.连接CB′,易证CB′⊥BC,根据勾股定理可得DB′==2,则△BDE周长的最小值为2+2.故选C.【点评】此题考查了线路最短的问题,确定动点E何位置时,使DE+BE的值最小是关键.12.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()A.(0,﹣)B.(0,﹣)C.(0,﹣)D.(0,﹣)【分析】由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得OD,即可得出点D的坐标.【解答】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,∴OC∥AB,∴∠BAC=∠DCA,∴∠B′AC=∠DCA,∴AD=CD,设OD=x,则DC=6﹣x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6﹣x)2,解得:x=,∴点D的坐标为:(0,﹣),故选:B.【点评】本题主要考查了翻折变换的性质、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解决问题的关键.13.如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【分析】本题考查动点函数图象的问题.【解答】解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选:C.【点评】本题主要考查学生对圆周角、圆内的角及函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.14.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222B.280C.286D.292【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2﹣4ac>0;③方程ax2+bx+c=0的另一个根在2和3之间;④2c<3b;⑤a十b>m(am+b),(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线开口方向得到a<0,根据对称轴为直线x=﹣=1,即b=﹣2a,得到b>0,根据抛物线与y轴的交点在x轴上方得到c>0,则有abc<0;根据抛物线与x轴有两个交点得到b2﹣4ac>0;利用对称性可得抛物线与x轴的另一个交点在点(2,0)和点(3,0)之间,于是得到方程ax2+bx+c=0的另一个根在2和3之间;把x=﹣1代入二次函数y=ax2+bx+c得到a﹣b+c<0,然后利于a=﹣b,可变形得到2c<3b;利用二次函数最大值问题得到x=1时,函数值最大,最大值为a+b+c,则a+b+c>am2+mb+c(m≠1),整理后得到a十b>m(am+b).【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=1,即b=﹣2a,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以②正确;∵抛物线与x轴的一个交点在点(﹣1,0)和原点之间,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(2,0)和点(3,0)之间,∴方程ax2+bx+c=0的另一个根在2和3之间,所以③正确;∵x=﹣1时,y<0,∴a﹣b+c<0,而a=﹣b,∴2c<3b,所以④正确;∵x=1时,函数值最大,最大值为a+b+c,∴a+b+c>am2+mb+c(m≠1),即a十b>m(am+b),所以⑤正确.故选D.【点评】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下,函数有最大值;抛物线的对称轴为直线x=﹣,顶点坐标为(﹣,);抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0时,抛物线与x轴有两个交点.二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中横线上)16.分解因式:2x2+4x+2=2(x+1)2.【分析】根据提公因式,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:原式=2(x2+2x+1)=2(x+1)2,故答案为:2(x+1)2.【点评】本题考查了因式分解,先提取公因式2,再利用和的平方公式.17.当x≤2时,在实数范围内有意义.【分析】直接利用二次根式的性质化简求出答案.【解答】解:2﹣x≥0,解得:x≤2.故答案为:≤2.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.18.袋中装有除颜色外其余都相同的红球和黄球共25个,小明通过多次模拟实验后,发现摸到的红球、黄球的概率分别是和,则袋中黄球有15个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【解答】解:∵摸到黄球的概率是,∴袋中黄球有袋中黄球有×25=15个.故本题答案为:15.【点评】此题考查概率的求法的应用:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为.【分析】首先连接OA,OB,由∠C=45°,易得△AOB是等腰直角三角形,继而求得答案.【解答】解:连接OA,OB,∵∠C=45°,∴∠AOB=2∠C=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴OA=ABcos45°=2×=.故答案为:.【点评】此题考查了圆周角定理以及等腰直角三角形性质.注意准确作出辅助线是解此题的关键.20.如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y=(x>0)上,则S△OBP=4.【分析】过A作AF垂直于OB,过P作PG垂直于OB,由△AOB和△ACD均为等边三角形,利用等边三角形的性质得到一对同位角相等,利用同位角相等两直线平行得到AD与OB平行,利用平行线间的距离处处相等得到AF=PG,根据同底等高的三角形面积相等得到三角形OBP与三角形OBA面积相等,再利用反比例函数k的几何意义求出三角形BEO面积,即可确定出三角形OBP面积.【解答】解:过A作AF⊥OB,作P作PG⊥OB,∵△OAB与△ADC都为等边三角形,∴∠BOA=∠DAC=60°,∴AD∥OB,∴AF=PG(平行线间的距离处处相等),∵OB为△OBA和△OBP的底,∴OBAF=OBPG,即S△OBP=S△OAB(同底等高的三角形面积相等),过B作BE⊥x轴,交x轴于点E,可得S△OBE=S△ABE=S△OBA,∵顶点B在双曲线y=(x>0)上,即k=4,∴S△OBE===2,则S△OBP=S△OBA=2S△OBE=4,故答案为:4【点评】此题考查了反比例函数系数k的几何意义,以及等边三角形的性质,熟练掌握反比例函数k的几何意义是解本题的关键.21.如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为.【分析】连接OC,由O为正方形的中心,得到∠DCO=∠BCO,又CF与CE为圆O的切线,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,在直角三角形BCE中,设BE=x,利用30°所对的直角边等于斜边的一半得到EC=2x,再由正方形的边长为4,得到BC为4,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可得到EC的长.【解答】解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,又∵CF与CE都为圆O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,又∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BCE中,设BE=x,则CE=2x,又BC=4,根据勾股定理得:CE2=BC2+BE2,即4x2=x2+42,解得:x=,∴CE=2x=.故答案为:【点评】此题考查了切线的性质,正方形的性质,勾股定理,切线长定理,以及折叠的性质,熟练掌握定理及性质是解本题的关键.三、解答题(本大题共7个小题,共57分.解答时写出必要的文字说明、证明过程或演算步骤)22.计算:÷+|﹣4|﹣2cos30°.【分析】原式利用二次根式除法,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+4﹣2×=4.【点评】此题考查了实数的运算,熟练掌握运算法则,牢记特殊角的三角函数值是解本题的关键.23.解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x﹣3,解得:x=﹣1,检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.24.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.【分析】根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.【解答】证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.【点评】本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.25.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况显示牌BC的长度.(结果保留根号)【分析】在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3m,∴DA=3m,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=m∴BC=CA﹣BA=(3﹣3)米.【点评】本题考查了解直角三角形的应用﹣仰角俯角,解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.26.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价) 甲 乙进价(元/件) 15 35售价(元/件) 20 45若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【分析】利用图表假设出两种商品的进价,得出它们的和为160件,也可表示出利润,得出二元方程组求出即可.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.【点评】此题主要考查了二元一次方程组的应用,假设出未知数寻找出题目中的等量关系是解决问题的关键.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M的横坐标与纵坐标之和是偶数的概率.【分析】(1)列表得出所有等可能的情况结果即可;(2)列表得出点M的横坐标与纵坐标之和是偶数的情况数,即可求出所求的概率.【解答】解:(1)列表如下: 1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)则点M坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)求出横纵坐标之和,如图所示: 1 2 31 2 3 42 3 4 53 4 5 6得到之和为偶数的情况有5种,故P(点M的横坐标与纵坐标之和是偶数)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.28.如图,在平面直角坐标系xOy中,矩形OBCD的顶点B,D的坐标分别为(8,0),(0,4).若反比例函数y=(x>0)的图象经过对角线OC的中点A,分别交DC边于点E,交BC边于点F.设直线EF的函数表达式为y=k2x+b.(1)反比例函数的表达式是y=;(2)求直线EF的函数表达式,并结合图象直接写出不等式k2x+b的解集;(3)若点P在直线BC上,将△CEP沿着EP折叠,当点C恰好落在x轴上时,点P的坐标是(8,3)或(8,﹣3﹣5).【分析】(1)求出点A坐标代入y=即可解决.(2)根据一次函数的图象在反比例函数图象的下面,即可写出不等式的解集.(3)如图作EM⊥OB于M,利用翻折不变性,设设PC=PN=x,利用△EMN∽△NBP得=,求出x即可解决问题.【解答】解:(1)∵四边形OBCD是矩形,∴OD=BC=4,OB=CD=8,∵OA=OC,∴点A坐标(4,2),∵点A在反比例函数y=上,∴k1=8,∴反比例函数为y=,故答案为y=.(2)∵点E、F在反比例函数图象上,∴点E坐标(2,4),点F坐标(8,1),设直线EF为y=kx+b,则,解得,∴直线EF为y=﹣x+5,于图象可知不等式k2x+b<的解集为x<2或x>8.(3)如图作EM⊥OB于M,∵∠DOM=∠EMO=∠EDO=90°,∴四边形DEMO是矩形,∴EM=DO=4,∵△EPN是由△EPC翻折得到,∴EC=EN=6,PC=PN,∠ECP=∠ENP=90°,设PC=PN=x,MN==2,∵∠ENM+∠PNB=90°,∠PNB+∠NPB=90°,∴∠ENM=∠NPB,∵∠EMN=∠PBN,∴△EMN∽△NBP,∴=,∴=,∴x=9﹣3,∴PB=BC﹣PC=4﹣(9﹣3)=3﹣5.当点P′在CB延长线上时,由△EMN′∽△N′BP′,设P′B=x,∵=,∴=,∴x=3+5,此时点P坐标(8,﹣3﹣5)故答案为(8,3﹣5)或(8,﹣3﹣5))【点评】本题考查反比例函数、一次函数的有关知识、翻折变换等知识,解题的关键是添加辅助线构造相似三角形,学会待定系数法确定函数解析式,学会利用函数图象确定自变量的取值范围,属于中考压轴题.29.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.【分析】(1)由条件可以得出AM=DM,∠A=∠ADF=90°,∠AME=∠DMF,可以证明△AEM≌△DFM,就可以得出结论.(2)过点G作GH⊥AD于H,通过条件可以证明△AEM≌△HMG,得出ME=MG,进而得出∠EGM=45°,再由(1)的结论可以得出∠EGF=90°,从而得出结论.(3)①当点G、C重合时利用三角形相似就可以求出AE的值,从而求出AE的取值范围.②过点G作GH⊥AD交AD延长线于点H,证明△AEM∽△HMG,可以得出,从而求出tan∠MEG=,就可以求出∠MEG=60°,就可以得出结论.【解答】解:(1)如图1,证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H,如图2,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.∴△AEM≌△HMG.∴ME=MG.∴∠EGM=45°.由(1)得△AEM≌△DFM,∴ME=MF.∵MG⊥EF,∴GE=GF.∴∠EGF=2∠EGM=90°.∴△GEF是等腰直角三角形.(3)①当C、G重合时,如图4,∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∴∠AME+∠AEM=90°.∵MG⊥EF,∴∠EMG=90°.∴∠AME+∠DMC=90°,∴∠AEM=∠DMC,∴△AEM∽△DMC∴,∴,∴AE=∴<AE≤.②△GEF是等边三角形.证明:过点G作GH⊥AD交AD延长线于点H,如图3,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.又∵∠A=∠GHM=90°,∴△AEM∽△HMG.∴.在Rt△GME中,∴tan∠MEG==.∴∠MEG=60°.由(1)得△AEM≌△DFM.∴ME=MF.∵MG⊥EF,∴GE=GF.∴△GEF是等边三角形.【点评】本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用,等边三角形的判定,等腰直角三角形的判定.在解答时添加辅助线构建全等形和相似形是关键.30.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y轴,设F(m,﹣m2+m+),则E(m,m+1),从而得出(m+1)﹣(﹣m2+m+)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.【解答】解:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0),∴解得,∴抛物线C1的解析式为y=﹣x2+x+,∵y=﹣x2+x+=﹣(x﹣1)2+2,∴顶点C的坐标为(1,2);(2)如图1,作CH⊥x轴于H,∵A(﹣1,0),C(1,2),∴AH=CH=2,∴∠CAB=∠ACH=45°,∴直线AC的解析式为y=x+1,∵△DEF是以EF为底的等腰直角三角形,∴∠DEF=45°,∴∠DEF=∠ACH,∴EF∥y轴,∵DE=AC=2,∴EF=4,设F(m,﹣m2+m+),则E(m,m+1),∴(m+1)﹣(﹣m2+m+)=4,解得m=3(舍)或m=﹣3,∴F(﹣3,﹣6);(3)①tan∠ENM的值为定值,不发生变化;如图2,∵DF⊥AC,BC⊥AC,∴DF∥BC,∵DF=BC=AC,∴四边形DFBC是矩形,作EG⊥AC,交BF于G,∴EG=BC=AC=2,∵EN⊥EM,∴∠MEN=90°,∵∠CEG=90°,∴∠CEM=∠NEG,∴△ENG∽△EMC,∴=,∵F(﹣3,﹣6),EF=4,∴E(﹣3,﹣2),∵C(1,2),∴EC==4,∴==2,∴tan∠ENM==2;∵tan∠ENM的值为定值,不发生变化;②点P经过的路径是线段P1P2,如图3,∵四边形BCEG是矩形,GP2=CP2,∴EP2=BP2,∵△EGN∽△ECB,∴=,∵EC=4,EG=BC=2,∴EB=2,∴=,∴EN=,∵P1P2是△BEN的中位线,∴P1P2=EN=;∴点M到达点C时,点P经过的路线长为.【点评】本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,难点在于(3)作辅助线构造出相似三角形和三角形的中位线.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。