资源资源简介:
漳州市诏安县2016年中考数学模拟试卷含答案解析2016年福建省漳州市诏安县怀恩中学中考数学模拟试卷一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.的倒数是()A.﹣2B.2C.D.2.下列运算正确的是()A.a3oa2=a6B.=3C.(a2)3=a5D.4a﹣2a=23.如图,一个碗摆放在桌面上,则它的俯视图是()A.B.C.D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A.7.6×10﹣8B.0.76×10﹣9C.7.6×108D.0.76×1095.分式的值为零,则x的值为()A.﹣1B.0C.±1D.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°7.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1B.2C.3D.410.如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15B.20C.15+D.15+二、填空题:(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.因式分解:x2﹣4xy+4y2=.12.已知反比例函数图象过点(3,1),则它的解析式是.13.如图,在△ABC中,DE∥BC,AD=3,BD=2,则S△ADE:S四边形DBCE=.14.若|m﹣2|+(n﹣4)2=0,则m=,n=.15.已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为.16.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三、解答题:(共9大题,满分86分,请将答案填入答题卡的相应位置)17.计算:﹣23+(π﹣3.14)0+|1﹣2|﹣.18.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)求出A2、B2、C2三点的坐标.20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行"兵教兵"互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)22.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,则最多购买B种奖品多少件.23.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.24.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做"等对角四边形".(1)已知:如图1,四边形ABCD是"等对角四边形",∠A≠∠C,∠A=70°,∠B=80°.则∠C=度,∠D=度.(2)在探究"等对角四边形"性质时:①小红画了一个"等对角四边形ABCD"(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②在①的条件下,若∠ABC=∠ADC=90°,AB=AD=4,∠BCD=60°,求等对角四边形ABCD的面积.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求?OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当?OEAF的面积为24时,请判断?OEAF是否为菱形?②是否存在点E,使?OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.2016年福建省漳州市诏安县怀恩中学中考数学模拟试卷参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.的倒数是()A.﹣2B.2C.D.【考点】倒数.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.2.下列运算正确的是()A.a3oa2=a6B.=3C.(a2)3=a5D.4a﹣2a=2【考点】幂的乘方与积的乘方;算术平方根;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法、二次根式、幂的乘方、合并同类项,即可解答.【解答】解:A、a3oa2=a5,故错误;B、=3,正确;C、(a2)3=a6,故错误;D、4a﹣2a=2a,故错误;故选:B.3.如图,一个碗摆放在桌面上,则它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面可看到一个圆,它的底还有一个看不见的圆,用虚线表示,故选C.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A.7.6×10﹣8B.0.76×10﹣9C.7.6×108D.0.76×109【考点】科学记数法-表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8.故选:A.5.分式的值为零,则x的值为()A.﹣1B.0C.±1D.1【考点】分式的值为零的条件.【分析】分式的值为零时,分子等于零,且分母不等于零.【解答】解:由题意,得x2﹣1=0,且x+1≠0,解得,x=1.故选D.6.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°【考点】平行线的性质;余角和补角.【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.7.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.【考点】一元二次方程的解.【分析】根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x>﹣1,得x>﹣1,由2x≤4,得x≤2,∴不等式组的解集是﹣1<x≤2,故选:B.9.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1B.2C.3D.4【考点】平移的性质;等边三角形的性质;菱形的判定.【分析】根据等边三角形的性质得AB=BC,再根据平移的性质得AB=DC,AB∥DC,则可判断四边形ABCD为菱形,根据菱形的性质得AD=BC,BD、AC互相平分;同理可得四边形ACED为菱形;由于BD⊥AC,AC∥DE,易得BD⊥DE.【解答】解:∵△ABC为等边三角形,∴AB=BC,∵等边△ABC沿射线BC向右平移到△DCE的位置,∴AB=DC,AB∥DC,∴四边形ABCD为平行四边形,而AB=BC,∴四边形ABCD为菱形,∴AD=BC,BD、AC互相平分,所以①②正确;同理可得四边形ACED为菱形,所以③正确;∵BD⊥AC,AC∥DE,∴BD⊥DE,所以④正确.故选D.10.如图,弧是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧上任意一点,若AC=5,则四边形ACBP周长的最大值是()A.15B.20C.15+D.15+【考点】圆心角、弧、弦的关系;勾股定理.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长为5,所以周长为5×3+5=15+5.故选C.二、填空题:(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.因式分解:x2﹣4xy+4y2=(x﹣2y)2.【考点】因式分解-运用公式法.【分析】运用完全平方公式因式分解即可得出答案.【解答】解:x2﹣4xy+4y2=x2﹣4xy+(2y)2=(x﹣2y)2,故答案为:(x﹣2y)212.已知反比例函数图象过点(3,1),则它的解析式是y=.【考点】待定系数法求反比例函数解析式.【分析】根据待定系数法,可得函数解析式.【解答】解:设反比例函数解析式为y=,将(3,1)代入函数解析式,得k=3×1=3,反比例函数解析式为y=,故答案为:y=.13.如图,在△ABC中,DE∥BC,AD=3,BD=2,则S△ADE:S四边形DBCE=9:16.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到=()2=,即可得到结论.【解答】解:∵AD=3,BD=2,∴AB=5,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形DBCE=9:16.故答案为:9:16.14.若|m﹣2|+(n﹣4)2=0,则m=2,n=4.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出关于m、n的方程,解方程求出m、n的值即可.【解答】解:根据题意得,m﹣2=0,n﹣4=0,解得m=2,n=4.故答案为:2,4.15.已知圆上一段弧长为6π,它所对的圆心角为120°,则该圆的半径为9.【考点】弧长的计算.【分析】弧长6π,根据弧长的计算公式l=得到.【解答】解:根据题意得:6π=,解得r=9,该圆的半径为9.16.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=2.【考点】二次函数图象与几何变换.【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【解答】解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.三、解答题:(共9大题,满分86分,请将答案填入答题卡的相应位置)17.计算:﹣23+(π﹣3.14)0+|1﹣2|﹣.【考点】实数的运算;零指数幂.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果.【解答】解:原式=﹣8+1+2﹣1﹣2=﹣8.18.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA)..【考点】全等三角形的判定.【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)求出A2、B2、C2三点的坐标.【考点】作图-位似变换;作图-轴对称变换.【分析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;(3)直接利用图形得出各点坐标即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A2、(3,6);B2(5,2);C2(11,4);20.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行"兵教兵"互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2, 男A1 男A2 …女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.21.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)【考点】解直角三角形的应用.【分析】首先构造直角三角形,得出AE=(x+2),BE=x,进而求出x的长,进而得出GH的长.【解答】解:根据已知画图,过点D作DE⊥AH于点E,设DE=x,则CE=x+2,在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m)答:GH的长为7.7m.22.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,则最多购买B种奖品多少件.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)分别利用购买A种奖品3件和B种奖品2件,共需60元;购买A种奖品5件和B种奖品3件,共需95元,得出等式求出答案;(2)利用购买A、B两种奖品共100件,购买费用不超过1150元,得出不等关系求出答案.【解答】解:(1)设A,B两奖品单价分别为x元和y元,根据题意得,解这个方程组得:,答:A,B两奖品单价分别为10元和15元;(2)设购买B种奖品为x件,则A种奖品为件,依题意得10+15x≤1150,解得:x≤30,答:最多购买B种奖品30件.23.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【考点】切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.24.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做"等对角四边形".(1)已知:如图1,四边形ABCD是"等对角四边形",∠A≠∠C,∠A=70°,∠B=80°.则∠C=130度,∠D=80度.(2)在探究"等对角四边形"性质时:①小红画了一个"等对角四边形ABCD"(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②在①的条件下,若∠ABC=∠ADC=90°,AB=AD=4,∠BCD=60°,求等对角四边形ABCD的面积.【考点】四边形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)根据四边形ABCD是"等对角四边形"得出∠D=∠B=80°,根据多边形内角和定理求出∠C即可;(2)①连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;②连接AC,求出△ABC≌△ADC,求出∠ACB=∠ACD=30°,解直角三角形求出AC和BC,根据三角形的面积公式求出即可.【解答】解:(1)∵四边形ABCD是"等对角四边形",∠A≠∠C,∠A=70°,∠B=80°,∴∠D=∠B=80°,∴∠C=360°﹣80°﹣80°﹣70°=130°,故答案为:130,80;(2)①证明:如图1,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB.∴∠CBD=∠CDB,∴CB=CD;②解:如图1,连接AC,∵在△ABC和△ADC中,∴△ABC≌△ADC∴∠ACB=∠ACD=∠BCD=×60°=30°,∵在Rt△ABC中,∠ACB=30°,AB=AD=4,∴AC=2AB=8,∴BC===4,∴S四边形ABCD=2S△ABC=2××4×4=16.25.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求?OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当?OEAF的面积为24时,请判断?OEAF是否为菱形?②是否存在点E,使?OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据对称轴设抛物线的解析式为y=a(x+)2+k,将A、B两点坐标代入,列方程组求a、k的值;(2)根据平行四边形的性质可知S=2S△OAE,△OAE的底为AO,高为E点纵坐标的绝对值,由此列出函数关系式,①当S=24时,由函数关系式得出方程,求x的值,再逐一判断;②不存在,只有当0E⊥AE且OE=AE时,□OEAF是正方形,由此求出E点坐标,判断E点坐标是否在抛物线上.【解答】解:(1)设抛物线的解析式为y=a(x+)2+k(k≠0),则依题意得:a+k=0,a+k=4,解之得:a=,k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E(x,y)在抛物线上,且位于第三象限.∴S=2S△OAE=2××0A×(﹣y)=﹣6y=﹣4(x+)2+25(﹣6<x<﹣1);①当S=24时,即﹣4(x+)2+25=24,解之得:x1=﹣3,x2=﹣4∴点E为(﹣3,﹣4)或(﹣4,﹣4)当点E为(﹣3,﹣4)时,满足OE=AE,故?OEAF是菱形;当点E为(﹣4,﹣4)时,不满足OE=AE,故?OEAF不是菱形.②不存在.当0E⊥AE且OE=AE时,?OEAF是正方形,此时点E的坐标为(﹣3,﹣3),而点E不在抛物线上,故不存在点E,使?OEAF为正方形.2016年7月4日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。