资源资源简介:
浙江省温州市2016年中考数学试卷详解版2016年浙江省温州市中考数学试卷一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7B.﹣7C.3D.﹣32.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.5.若分式的值为0,则x的值是()A.﹣3B.﹣2C.0D.26.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.7.六边形的内角和是()A.540°B.720°C.900°D.1080°8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+109.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB.b>a>cC.c>b>aD.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=.12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.13.方程组的解是.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.七巧板是我们祖先的一项卓越创造,被誉为"东方魔板",小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.为了解学生对"垃圾分类"知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求"非常了解"的人数的百分比.(2)已知该校共有1200名学生,请估计对"垃圾分类"知识达到"非常了解"和"比较了解"程度的学生共有多少人?19.如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个?ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价. 甲种糖果 乙种糖果 丙种糖果单价(元/千克) 15 25 30千克数 40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7B.﹣7C.3D.﹣3【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【考点】频数(率)分布直方图.【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.3.三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.5.若分式的值为0,则x的值是()A.﹣3B.﹣2C.0D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.【考点】概率公式.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.7.六边形的内角和是()A.540°B.720°C.900°D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB.b>a>cC.c>b>aD.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=o2xox+(2﹣1﹣x)o=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37分.【考点】中位数.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.13.方程组的解是.【考点】二元一次方程组的解.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.15.七巧板是我们祖先的一项卓越创造,被誉为"东方魔板",小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B的坐标为(n,),结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【考点】实数的运算;单项式乘多项式;平方差公式;零指数幂.【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.18.为了解学生对"垃圾分类"知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求"非常了解"的人数的百分比.(2)已知该校共有1200名学生,请估计对"垃圾分类"知识达到"非常了解"和"比较了解"程度的学生共有多少人?【考点】扇形统计图;用样本估计总体.【分析】(1)根据扇形统计图可以求得"非常了解"的人数的百分比;(2)根据扇形统计图可以求得对"垃圾分类"知识达到"非常了解"和"比较了解"程度的学生共有多少人.【解答】解:(1)由题意可得,"非常了解"的人数的百分比为:,即"非常了解"的人数的百分比为20%;(2)由题意可得,对"垃圾分类"知识达到"非常了解"和"比较了解"程度的学生共有:1200×=600(人),即对"垃圾分类"知识达到"非常了解"和"比较了解"程度的学生共有600人.19.如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是?ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在?ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个?ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【考点】平行四边形的性质.【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=ABosinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价. 甲种糖果 乙种糖果 丙种糖果单价(元/千克) 15 25 30千克数 40 40 20(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【考点】一元一次不等式的应用;加权平均数.【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.23.如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【考点】二次函数综合题.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵oDEoEO=oGBoGF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BFG的面积,∴o(+3)o(m﹣)=omoo(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【考点】圆的综合题.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2ABocos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BMotan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.∴S矩形EFGH=EFoMN=2r(18﹣6r)=24.解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。