资源资源简介:
宿州市灵璧县2016年中考数学第一次模试卷含答案解析2016年安徽省宿州市灵璧县中考数学一模试卷一、选择题(本大题共10小题,每小题4分.满分40分,在每小题给出的四个只有一个选项符合题目要求的)1.在实数0,1,﹣,﹣1中,最大的数是()A.0 B.1 C.﹣ D.﹣12.下列各式计算正确的是()A.2+b=2b B. C.(2a2)3=8a5 D.a6÷a4=a23.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.4.估计+3的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间5.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90 B.100(1+2x)=90 C.100(1﹣x)2=90 D.100(1+x)2=906.国家提倡"低碳减排",某公司计划在海边建风能发电站,电站年均发电量约为216000000度,若将数据216000000用科学记数法表示为()A.216×106 B.21.6×107 C.2.16×108 D.2.16×1097.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10户数 1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.58.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B. C. D.9.如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B﹣C﹣D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为y,运动时间为x,则下列图象中能大致表示y与x之间函数关系图象的是()A. B. C. D.10.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.的算术平方根为.12.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.13.我们把一个半圆与抛物线的一部分合成的封闭图形称为"蛋圆",如果一条直线与"蛋圆"只有一个交点,那么这条直线叫做"蛋圆"的切线.如图,点A、B、C、D分别是"蛋圆"与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的"蛋圆"的切线的解析式为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1);⑤设A(100,y1),B(﹣100,y2)在该抛物线上,则y1>y2.其中正确的结论有.(写出所有正确结论的序号)三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)计算:2﹣1﹣tan60°+(π﹣2016)0+|﹣|(2)化简:(x+﹣)÷.16.解不等式≤,并求出它的非负整数解.17.某校加强社会主义核心价值观教育,在清明节期间,为缅怀先烈足迹,组织学生参观滨湖渡江战役纪念馆.渡江战役纪念馆实物如图(1)所示.某数学兴趣小组同学突发奇想,我们能否测量斜坡的长和馆顶的高度?他们画出渡江战役纪念馆示意图如图(2),经查资料,获得以下信息:斜坡AB的坡比i=1:,BC=50m,∠ACB=135°,求AB及过A点作的高是多少?(结果精确到0.1米,参考数据:≈1.41≈1.73)18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.(2)求BA边旋转到B′A′位置时所扫过图形的面积.19."切实减轻学生课业负担"是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.20.如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线.(2)若∠C=30°,连接EF,求证:EF∥AB;(3)在(2)的条件下,若AE=2,求图中阴影部分的面积.21.已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;(3)如图3,将(2)中的"正方形ABCD"改为"矩形ABCD",且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.2016年安徽省宿州市灵璧县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分.满分40分,在每小题给出的四个只有一个选项符合题目要求的)1.在实数0,1,﹣,﹣1中,最大的数是()A.0 B.1 C.﹣ D.﹣1【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣1<﹣<0<1,∴四个实数中,最大的实数是1.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.下列各式计算正确的是()A.2+b=2b B. C.(2a2)3=8a5 D.a6÷a4=a2【考点】同底数幂的除法;实数的运算;合并同类项;幂的乘方与积的乘方.【分析】根据积的乘方、同底数幂的除法,即可解答.【解答】解:A、2与b不是同类项,不能合并,故错误;B、与不是同类二次根式,不能合并,故错误;C、(2a2)3=8a6,故错误;D、正确.故选:D.【点评】本题考查了积的乘方、同底数幂的除法,解决本题的关键是熟记同底数幂的除法法则.3.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.估计+3的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间【考点】估算无理数的大小.【专题】常规题型.【分析】先估计的整数部分,然后即可判断+3的近似值.【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质,估算其数值.现实生活中经常需要估算,估算应是我们具备的数学能力,"夹逼法"是估算的一般方法,也是常用方法.5.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90 B.100(1+2x)=90 C.100(1﹣x)2=90 D.100(1+x)2=90【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设该商品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:100(1﹣x)2=90.故答案为:100(1﹣x)2=90.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.国家提倡"低碳减排",某公司计划在海边建风能发电站,电站年均发电量约为216000000度,若将数据216000000用科学记数法表示为()A.216×106 B.21.6×107 C.2.16×108 D.2.16×109【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将216000000用科学记数法表示为2.16×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10户数 1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7 C.6,7.5 D.7,7.5【考点】众数;中位数.【专题】计算题.【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故选A.【点评】本题考查了众数和中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.8.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B. C. D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.【解答】解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.9.如图,四边形ABCD是矩形,AB=8,BC=4,动点P以每秒2个单位的速度从点A沿线段AB向B点运动,同时动点Q以每秒3个单位的速度从点B出发沿B﹣C﹣D的方向运动,当点Q到达点D时P、Q同时停止运动,若记△PQA的面积为y,运动时间为x,则下列图象中能大致表示y与x之间函数关系图象的是()A. B. C. D.【考点】动点问题的函数图象.【分析】根据题意,分两种情况:(1)当动点Q在BC边上运动时;(2)当动点Q在CD边上运动时;然后根据三角形的面积的求法,分类讨论,求出y与x之间函数关系式,进而判断出y与x之间函数关系图象的是哪个即可.【解答】解:(1)如图1,当动点Q在BC边上运动时,,∵4÷3=,∴动点Q从点B运动到点C向右的时间是秒,∵AP=2x,BQ=3x,∴y=2x×3x÷2=3x2(0<x),∴抛物线开口向上;(2)如图2,当动点Q在CD边上运动时,,∵(8+4)÷3=4(秒),4﹣,∴动点Q从点C运动到点D需要的时间是秒,∵AP=2x,BQ=4,∴y=2x×4÷2=4x(<x≤4),单调递增,综上,可得y=,∴能大致表示y与x之间函数关系图象的是:.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,考查了函数解析式的求法,以及分类讨论思想的应用,要熟练掌握.(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是熟练掌握三角形的面积公式.10.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个【考点】矩形的性质;等边三角形的判定;含30度角的直角三角形.【分析】根据矩形性质求出OD=OC,根据角求出∠DOC=60°即可得出三角形DOC是等边三角形,求出AC=2AB,即可判断②,求出∠BOE=75°,∠AOB=60°,相加即可求出∠AOE,根据等底等高的三角形面积相等得出S△AOE=SCOE.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=(180°﹣∠OBE)=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=SCOE,∴④正确;故选C.【点评】本题考查了矩形性质,平行线性质,角平分线定义,等边三角形的性质和判定,三角形的内角和定理等知识点的综合运用.二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.的算术平方根为.【考点】算术平方根.【专题】计算题.【分析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【解答】解:∵=2,∴的算术平方根为.故答案为:.【点评】此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45度.【考点】圆周角定理.【专题】计算题.【分析】∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.【点评】本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.13.我们把一个半圆与抛物线的一部分合成的封闭图形称为"蛋圆",如果一条直线与"蛋圆"只有一个交点,那么这条直线叫做"蛋圆"的切线.如图,点A、B、C、D分别是"蛋圆"与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的"蛋圆"的切线的解析式为y=﹣2x﹣3.【考点】二次函数综合题.【专题】综合题.【分析】根据圆心坐标及圆的半径,结合图形,可得点A坐标为(﹣1,0),点B坐标为(3,0),利用待定系数法确定抛物线解析式,因为经过点D的"蛋圆"切线过D点,所以本题可设它的解析式为y=kx﹣3,因为相切,所以它们的交点只有一个,进而可根据一元二次方程的有关知识解决问题.【解答】解:∵AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,∴A(﹣1,0),B(3,0),∵抛物线过点A、B,∴设抛物线的解析式为y=a(x+1)(x﹣3),又∵抛物线过点D(0,﹣3),∴﹣3=ao1o(﹣3),即a=1,∴y=x2﹣2x﹣3,∵经过点D的"蛋圆"切线过D(0,﹣3)点,∴设它的解析式为y=kx﹣3,又∵抛物线y=x2﹣2x﹣3与直线y=kx﹣3相切,∴x2﹣2x﹣3=kx﹣3,即x2﹣(2+k)x=0只有一个解,∴△=(2+k)2﹣4×0=0,解得:k=﹣2,即经过点D的"蛋圆"切线的解析式为y=﹣2x﹣3.故答案为:y=﹣2x﹣3.【点评】本题考查了二次函数的综合,需灵活运用待定系数法建立函数解析式,并利用切线的性质,结合一元二次方程来解决问题,难度一般.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1);⑤设A(100,y1),B(﹣100,y2)在该抛物线上,则y1>y2.其中正确的结论有①②④⑤.(写出所有正确结论的序号)【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确),∵|100+1|>|﹣100+1|,且开口向上,∴y1>y2.(故⑤正确).故答案为:①②④⑤.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)计算:2﹣1﹣tan60°+(π﹣2016)0+|﹣|(2)化简:(x+﹣)÷.【考点】实数的运算;分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的定义化简即可.(2)先计算括号后计算除法即可.【解答】解:(1)2﹣1﹣tan60°+(π﹣2016)0+|﹣|=﹣×+1+=﹣3+=﹣1;(2)(x+﹣)÷.=o(x﹣1)2=【点评】本题考查负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的定义等性质,记住这些定义是解决问题的关键,属于中考常考题型.16.解不等式≤,并求出它的非负整数解.【考点】解一元一次不等式;一元一次不等式的整数解.【分析】去分母、去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的非负整数解即可.【解答】解:去分母,得3(x﹣2)≤2(7﹣x),去括号,得3x﹣6≤17﹣2x,移项,得3x+2x≤17+6,合并同类项,得5x≤23,系数化成1得x≤.则非负整数解是:0、1、2、3、4.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.17.某校加强社会主义核心价值观教育,在清明节期间,为缅怀先烈足迹,组织学生参观滨湖渡江战役纪念馆.渡江战役纪念馆实物如图(1)所示.某数学兴趣小组同学突发奇想,我们能否测量斜坡的长和馆顶的高度?他们画出渡江战役纪念馆示意图如图(2),经查资料,获得以下信息:斜坡AB的坡比i=1:,BC=50m,∠ACB=135°,求AB及过A点作的高是多少?(结果精确到0.1米,参考数据:≈1.41≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】过A点作AD⊥BC的延长线于D,设AD=x,根据坡度的概念列出方程,解方程即可.【解答】解:过A点作AD⊥BC的延长线于D,∵∠ACB=135°,∴△ADC为等腰直角三角形,设AD=x,则CD=x,在Rt△ADB中,BD=50+x,∵斜坡AB的坡比i=1:,∴x:(x+50)=1:,解得:x≈68.1m,AD=68.1m,∴AB=2AD=136.2m,答:斜坡136.2m,馆顶A高68.1m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义、理解坡度的概念是解题的关键.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.(2)求BA边旋转到B′A′位置时所扫过图形的面积.【考点】作图-旋转变换.【分析】(1)利用旋转的性质得出各对应点位置,再顺次连结即可求解;(2)先根据勾股定理得到AB的长,再利用扇形面积公式得出答【解答】解:(1)如图所示:△A′BC′即为所求,(2)∵AB==,∴BA边旋转到BA″位置时所扫过图形的面积为:=.【点评】此题主要考查了旋转变换、勾股定理以及扇形面积,得出对应点位置是解题关键.19."切实减轻学生课业负担"是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了200学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是108°;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据B类的人数和所占的百分比即可求出总数;(2)求出C的人数从而补全统计图;(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)共调查的中学生数是:80÷40%=200(人),故答案为:200;(2)C类的人数是:200﹣60﹣80﹣20=40(人),补图如下:(3)根据题意得:α=×360°=108°,故答案为:108°;(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种,∴P(2人来自不同班级)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线.(2)若∠C=30°,连接EF,求证:EF∥AB;(3)在(2)的条件下,若AE=2,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)利用平行线的性质结合等腰三角形的性质得出∠BEO=∠CBE,进而得出∠AEO=∠C=90°,即可得出答案;(2)根据已知得出∠CEF=∠FBE=30°,进而得出∠BEF的度数,得出∠BEF=∠OBE,进而得出答案;(3)得出S△EFB=S△EOF,由S阴影=S扇EOF,求出答案.【解答】(1)证明:连接OE,∵OB=OE,∴∠BEO=∠EBO,∵BE平分∠CBO,∴∠EBO=∠CBE,∴∠BEO=∠CBE,∴EO∥BC,∵∠C=90°,∴∠AEO=∠C=90°,则AC是圆O的切线;(2)证明:∵∠A=30°,∴∠ABC=60°,∴∠OBE=∠FBE=30°,∴∠BEC=90°﹣∠FBE=60°,∵∠CEF=∠FBE=30°,∴∠BEF=∠BEC﹣∠CEF=60°﹣30°=30°,∴∠BEF=∠OBE,∴EF∥AB;(3)解:连接OF∵EF∥AB,∴S△EFB=S△EOF,∴S阴影=S扇EOF,设圆的半径为r,在Rt△AEO中,r=2,∴S阴影=S扇EOF==.【点评】此题主要考查了切线的判定以及扇形面积求法、平行线的判定与性质等知识,正确作出辅助线得出S阴影=S扇EOF是解题关键.21.已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.【考点】反比例函数综合题.【专题】计算题.【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.【解答】解:(1)∵图象过点A(﹣1,6),∴=6,解得m=2.故m的值为2;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(﹣1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴=,∵AB=2BC,∴=,∴=,∴BD=2.即点B的纵坐标为2.当y=2时,x=﹣3,即B(﹣3,2),设直线AB解析式为:y=kx+b,把A和B代入得:,解得,∴直线AB解析式为y=2x+8,令y=0,解得x=﹣4,∴C(﹣4,0).【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,根据围网的总长为80m建立方程8a+2x=80,解方程求出a的值,进而得到AE的长;(2)根据矩形区域ABCD的面积=ABoBC=108建立方程3(﹣x+10)ox=108,解方程即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,AB=3a,∴8a+2x=80,∴a=﹣x+10,∴AE=2a=﹣x+20;(2)∵矩形区域ABCD的面积=ABoBC,∴3(﹣x+10)ox=108,整理得x2﹣40x+144=0,解得x=36或4,即当y=108m2时,x的值为36或4.【点评】本题考查了一元二次方程的应用,涉及到矩形的周长与面积公式,得出AE=2BE,进而用含x的代数式正确表示出BE是解题的关键.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;(3)如图3,将(2)中的"正方形ABCD"改为"矩形ABCD",且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.【考点】相似三角形的判定与性质;全等三角形的判定与性质;矩形的性质;正方形的性质.【专题】压轴题.【分析】(1)由∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,可得∠DEF=∠GEB,又由正方形的性质,可利用ASA证得Rt△FED≌Rt△GEB,则问题得证;(2)首先过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证得Rt△FEP≌Rt△GEH,则问题得证;(3)首先过点E分别作BC、CD的垂线,垂足分别为M、N,易证得EM∥AB,EN∥AD,则可证得△CEN∽△CAD,△CEM∽△CAB,又由有两角对应相等的三角形相似,证得△GME∽△FNE,根据相似三角形的对应边成比例,即可求得答案.【解答】(1)证明:∵∠GEB+∠BEF=90°,∠DEF+∠BEF=90°,∴∠DEF=∠GEB,在△FED和△GEB中,,∴Rt△FED≌Rt△GEB,∴EF=EG;(2)解:成立.证明:如图,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴Rt△FEP≌Rt△GEH,∴EF=EG;(3)解:如图,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,则∠MEN=90°,∴EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴,,∴,即==,∵∠NEF+∠FEM=∠GEM+∠FEM=90°,∴∠GEM=∠FEN,∵∠GME=∠FNE=90°,∴△GME∽△FNE,∴,∴.【点评】此题考查了正方形,矩形的性质,以及全等三角形与相似三角形的判定与性质.此题综合性较强,注意数形结合思想的应用.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。