资源资源简介:
长春市朝阳区2016年中考数学一模试卷含答案解析2016年吉林省长春市朝阳区中考数学一模试卷一、选择题:每小题3分,共24分.1.若等式﹣3□2=﹣1成立,则□内的运算符号为()A.+ B.﹣ C.× D.÷2.将数412000用科学记数法表示为()A.4.12×106 B.4.12×105 C.41.2×104 D.0.412×1063.计算(2a3)2的结果是()A.4a6 B.4a5 C.2a6 D.2a54.图中的两个长方体底面相同而高度不同,关于这两个长方体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同5.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A. B. C. D.6.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°7.如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥OC交⊙O于点D,若∠B=25°,则∠BAD的度数是()A.25° B.30° C.40° D.50°8.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.4二、填空题:每小题3分,共18分.9.计算:﹣=.10.一元二次方程x2﹣2x+2=0根的判别式的值是.11.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为.12.如图,在平面直角坐标系中,点A在函数y=的图象上,过点A作AB∥x轴交y轴于点B,连结OA,过点B作BC∥OA交x轴于点C,若△BOC的面积是2,则k=.13.如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则的长是.(结果保留π)14.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是.三、解答题:本大题共10小题,共78分.15.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=﹣.16.一个不透明的口袋里有三个小球,上面分别标有数字1,3,4,每个小球除数字外其他都相同,甲先从口袋中随机取出1个小球,记下数字后放回,乙再从口袋中随机取出1个小球记下数字,用画树状图(或列表)的方法,求取出的两个小球上的数字之积为偶数的概率.17.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.18.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点(点D不与点A重合),点E是AC的中点,连结DE并延长至点F,使EF=DE,连结AF、CF.(1)求证:四边形ADCF是平行四边形;(2)当点D是AB的中点时,若AB=4,求四边形ADCF的周长.19.我区积极开展"体育大课间"活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?20.如图,某校教学兴趣小组为测量建筑物AB的高度,用高度为1m的测量仪器CD,在距建筑物AB底部25m的C处,测得该建筑物顶部A处的仰角为∠ADE=41°,求建筑物AB的高度.(精确到0.1m).【参考数据:sin41°=0.66,cos41°=0.75,tan41°=0.87】21.某县在实施"村村通"工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.22.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=°.应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN=°;图③中∠CPN=°.拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN=°(用含n的代数式表示).23.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.24.如图①,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A、B的坐标分别是(﹣1,0)、(4,0),与y轴交于点C,点P在第一、二象限的抛物线上,过点P作x轴的平行线分别交y轴和直线BC于点D、E,设点P的横坐标为m,线段DE的长度为d.(1)求这条抛物线对应的函数表达式;(2)当点P在第一象限时,求d与m之间的函数关系式;(3)在(2)的条件下,当PE=2DE时,求m的值;(4)如图②,过点E作EF∥y轴交x轴于点F,直接写出四边形ODEF的周长不变时m的取值范围.2016年吉林省长春市朝阳区中考数学一模试卷参考答案与试题解析一、选择题:每小题3分,共24分.1.若等式﹣3□2=﹣1成立,则□内的运算符号为()A.+ B.﹣ C.× D.÷【考点】有理数的混合运算.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:∵﹣3+2=﹣1,∴□内的运算符号为+.故选:A.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.2.将数412000用科学记数法表示为()A.4.12×106 B.4.12×105 C.41.2×104 D.0.412×106【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将412000用科学记数法表示为:4.12×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.计算(2a3)2的结果是()A.4a6 B.4a5 C.2a6 D.2a5【考点】幂的乘方与积的乘方.【分析】根据积的乘方,即可解答.【解答】解:(2a3)2=4a6.故选A.【点评】本题主要考查了幂的乘方的性质,熟练掌握运算法则是解题的关键.4.图中的两个长方体底面相同而高度不同,关于这两个长方体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的高不同,故A错误;B、俯视图是两个相等的正方形,故B正确;C、左视图的高不同,故C错误;D、主视图、俯视图不相同,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.5.不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先分别解两个不等式得到x<3和x≤1,然后利用数轴分别表示出x<3和x≤1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤0得x≤1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选C.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意"两定":一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:"小于向左,大于向右".6.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°【考点】三角形的外角性质.【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.7.如图,AB是⊙O的直径,点C在圆周上,连结BC、OC,过点A作AD∥OC交⊙O于点D,若∠B=25°,则∠BAD的度数是()A.25° B.30° C.40° D.50°【考点】圆周角定理;平行线的性质.【分析】根据∠B=25°,得∠C=25°,再由外角的性质得∠AOC,根据平行线的性质得出∠BAD的度数.【解答】解:∵OB=OC,∴∠B=∠C,∵∠B=25°,∴∠C=25°,∵∠AOC=2∠B,∴∠AOC=50°,∵AD∥OC,∴∠BAD=∠AOC=50°,故选D.【点评】本题考查的是圆周角定理,以及平行线的性质,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.8.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.4【考点】一次函数图象上点的坐标特征.【分析】求出点E和直线y=﹣x+2与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=﹣x+2上,∴点E的坐标(,1),∵直线y=﹣x+2与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.【点评】本题考查一次函数图象上的点的坐标特征,解题的关键是知道点的位置能确定点的坐标,是数形结合的好题目,属于中考常考题型.二、填空题:每小题3分,共18分.9.计算:﹣=.【考点】二次根式的加减法.【分析】首先化简二次根式,进而求出答案.【解答】解:﹣=2﹣=.故答案为:.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.10.一元二次方程x2﹣2x+2=0根的判别式的值是﹣4.【考点】根的判别式.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣2x+2=0根的判别式的值是:△=(﹣2)2﹣4×2=﹣4.故答案为:﹣4.【点评】此题主要考查了根的判别式,正确记忆公式是解题关键.11.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为3.【考点】平行线分线段成比例.【专题】计算题.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后利用比例的性质可计算出BE的长.【解答】解:∵l1∥l2∥l3,∴=,即=,∴BE=3.故答案为3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.12.如图,在平面直角坐标系中,点A在函数y=的图象上,过点A作AB∥x轴交y轴于点B,连结OA,过点B作BC∥OA交x轴于点C,若△BOC的面积是2,则k=4.【考点】反比例函数系数k的几何意义.【分析】根据题意四边形ABCO是平行四边形,求出△ABO的面积,利用公式:S△ABO=即可解决问题.【解答】解:∵AO∥BC、AB∥CO,∴四边形ABCO是平行四边形,∴AO=BC,AB=CO,S△AOB=S△BOC=2,∴,∵k>0,∴k=4,故答案为4.【点评】本题考查反比例函数系数k的几何意义,记住公式:S△ABO=是解决问题的关键,属于中考常考题型.13.如图,AB是⊙O的直径,BC是弦,连结OC,过点C的切线交BA的延长线于点D,若OC=CD=2,则的长是.(结果保留π)【考点】切线的性质;弧长的计算.【分析】根据切线的性质和OC=CD证得△OCD是等腰直角三角形,证得∠COB=135°,然后根据弧长公式求得即可.【解答】解:∵CD是⊙O的切线,∴OC⊥CD,∵OC=CD=2,∴△OCD是等腰直角三角形,∴∠COD=45°,∴∠COB=135°,∴的长==.故答案为.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,切线的性质的应用是解题的关键.14.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是2.【考点】二次函数图象上点的坐标特征.【分析】求得C的坐标,进而求得B的坐标,根据点P关于x轴的对称点恰好落在直线AB上得出三角形的高,然后根据三角形面积公式即可求得.【解答】解:令x=0,则y=x2﹣2x﹣1=﹣1,∴A(0,﹣1),把y=﹣1代入y=x2﹣2x﹣1得﹣1=x2﹣2x﹣1,解得x1=0,x2=2,∴B(2,﹣1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.【点评】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标以及三角形的高是解题的关键.三、解答题:本大题共10小题,共78分.15.先化简,再求值:(x+2)2﹣(x+1)(x﹣1),其中x=﹣.【考点】整式的混合运算-化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5,当x=﹣时,原式=4×(﹣)+5=3.【点评】本题考查了整式的混合运算的应用,主要考查学生的计算能力和化简能力,题目比较好,难度适中.16.一个不透明的口袋里有三个小球,上面分别标有数字1,3,4,每个小球除数字外其他都相同,甲先从口袋中随机取出1个小球,记下数字后放回,乙再从口袋中随机取出1个小球记下数字,用画树状图(或列表)的方法,求取出的两个小球上的数字之积为偶数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树形图,然后由树形图即可求得所有等可能的结果与两次取出的数字之积为偶数情况,再利用概率公式即可求得答案.【解答】解:画树形图得:由树形图可知所有可能情况有9种,取出的两个小球上的数字之积为偶数的有5种,所以P(取出的两个小球上的数字之积为偶数)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.17.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.【考点】分式方程的应用.【分析】设原计划每天铺设管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.【解答】解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.【点评】本题考查分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.期中找到合适的等量关系是解决问题的关键.18.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点(点D不与点A重合),点E是AC的中点,连结DE并延长至点F,使EF=DE,连结AF、CF.(1)求证:四边形ADCF是平行四边形;(2)当点D是AB的中点时,若AB=4,求四边形ADCF的周长.【考点】菱形的判定与性质;平行四边形的判定.【分析】(1)根据两组对边分别平行的四边形是平行四边形即可判定.(2)只要证明四边形ADCF是菱形即可解决问题.【解答】(1)证明:∵点E是AC的中点,∴AE=EC,∵EF=DE,∴四边形ADCF是平行四边形.(2)解:∵∠ACB=90°,点DAB的中点,∴CD=AD=AB=2,∴平行四边形ADCF是菱形,∴菱形ADC的周长8.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,熟练记住平行四边形、菱形的判定和性质是解题的关键,属于参考常考题型.19.我区积极开展"体育大课间"活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1减去其他三项的百分比得出B项目的百分比,然后求出圆心角的度数;(2)首先根据A项目的人数和百分比求出总人数,然后计算出B项目的人数;(3)利用全校人数×足球的百分比得出人数.【解答】解:(1)最喜欢B项目的人数百分比:1﹣44%﹣8%﹣28%=20%,其所在扇形图中的圆心角的度数为:360°×20%=72°;(2)选择B项目的人数为:20%=20(人),补全图形如下:(3)2000×28%=560人.答:全校最喜欢足球的人数是560人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.20.如图,某校教学兴趣小组为测量建筑物AB的高度,用高度为1m的测量仪器CD,在距建筑物AB底部25m的C处,测得该建筑物顶部A处的仰角为∠ADE=41°,求建筑物AB的高度.(精确到0.1m).【参考数据:sin41°=0.66,cos41°=0.75,tan41°=0.87】【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意结合锐角三角函数关系得出AE的长,进而得出答案.【解答】解:由题意可得:BC=DE=25m,则tan41°===0.87,解得:AE=21.75,故AB=21.75+1≈22.8(m).答:建筑物AB的高度为22.8m.【点评】此题主要考查了解直角三角形的应用,正确得出AE的长是解题关键.21.某县在实施"村村通"工程中,决定在A、B两村之间修一条公路,甲、乙两个工程队分别从A、B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.【考点】一次函数的应用.【分析】(1)由函数图象在x=8时相交可知:前8天甲、乙两队修的公路一样长,结合修路长度=每日所修长度×修路天数可计算出乙队前8天所修的公路长度,从而得出结论;(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,代入图象中点的坐标可列出关于k和b的二元一次方程组,解方程组即可得出结论;(3)由图象可知乙队修的公路总长度,再根据(2)得出的解析式求出甲队修的公路的总长度,二者相加即可得出结论.【解答】解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1600(米).答:这条公路的总长度为1800米.【点评】本题考查了一次函数的性质、代数系数法求函数解析式,解题的关键:(1)由图象交点得出前8天甲、乙两队修的公路一样长;(2)代入点的坐标得出关于k、b的二元一次方程组;(3)代入x值求y值.本题属于基础题,难度不大,解决给题型题目是,结合图象中的点,代入函数解析式得出方程(或方程组)是关键.22.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN=120°.应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN=90°;图③中∠CPN=72°.拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN=°(用含n的代数式表示).【考点】四边形综合题.【分析】探究:(1)利用等边三角形的性质得到BC=AC,∠ACB=∠ABC,从而得到△ACN≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM,再利用三角形的外角等于与它不相邻的两内角之和,即可求解.应用:利用正方形(或正五边形)的性质得到BC=DC,∠ABC=∠BCD,从而判断出△DCN≌△CBM,再利用全等三角形的性质得到∠CDN=∠BCM,再利用三角形的外角等于与它不相邻的两内角之和(或者三角形的内角和),即可.拓展:利用正n五边形的性质得到BC=DC,∠ABC=∠BCD,从而判断出△DCN≌△CBM,再利用全等三角形的性质得到∠CDN=∠BCM,再利用三角形的内角和,即可.【解答】探究:(1)解:∵△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC=60°.∴∠ACN=∠CBM=60°.在△ACN和△CBM中,∴△ACN≌△CBM.(2)解:∵△DCN≌△CBM,∴∠CAN=∠BCM,∵∠ABC=∠BMC+∠BCM,∠BAN=∠BAC+∠CAN,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60°+60°=120°,故答案为120.应用:将等边三角形换成正方形,解:四边形ABCD是正方形,∴BC=DC,∠ABC=∠BCD=90°.∴∠MBC=∠DCN=120°.在△DCN和△CBM中,∴△DCN≌△CBM.∴∠CDN=∠BCM,∵∠BCM=∠PCN∴∠CDN=∠PCN在Rt△DCN中,∠CDN+∠CND=90°,∴∠PCN+∠CND=90°,∴∠CPN=90,将等边三角形换成正五边形,五边形ABCDE是正五边形,∴BC=DC=108°.∴∠MBC=∠DCN=72°.在△DCN和△CBM中,∴△DCN≌△CBM.∴∠BMC=∠CND,∠BCM=∠CDN,∵∠ABC=∠BMC+∠BCM=108°∴∠CPN=180°﹣(∠CND+∠PCN)=180°﹣(∠CND+∠BCM)=180°﹣(∠BCM+∠BMC)=180°﹣108°=72°.故答案为90,72.拓展解:方法和上面正五边形的方法一样,得到∠CPN=180°﹣(∠CND+∠PCN)=180°﹣(∠CND+∠BCM)=180°﹣(∠BCM+∠BMC)=180°﹣108°=72°故答案为.【点评】本题是四边形的综合题,也是一道规律题,主要考查了正n边形的性质,涉及知识点比较多,如等边三角形、正方形、正五边形的性质,如由四边形ABCD是正方形,得到BC=DC,∠ABC=∠BCD=90°,全等三角形的性质和判定,三角形的内角和定理,对顶角相等,解题的关键是充分利用三角形的外角等于与它不相邻的两内角之和(或者三角形的内角和).23.如图,△ABC是等边三角形,AB=4cm,CD⊥AB于点D,动点P从点A出发,沿AC以2cm/s的速度向终点C运动,当点P出发后,过点P作PQ∥BC交折线AD﹣DC于点Q,以PQ为边作等边三角形PQR,设四边形APRQ与△ACD重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)当点Q在线段AD上时,用含t的代数式表示QR的长;(2)求点R运动的路程长;(3)当点Q在线段AD上时,求S与t之间的函数关系式;(4)直接写出以点B、Q、R为顶点的三角形是直角三角形时t的值.【考点】相似形综合题.【专题】综合题;分类讨论.【分析】(1)易证△APQ是等边三角形,即可得到QR=PQ=AP=2t;(2)过点A作AG⊥BC于点G,如图②,易得点R运动的路程长是AG+CG,只需求出AG、CG就可解决问题;(3)四边形APRQ与△ACD重叠部分图形可能是菱形,也可能是五边形,故需分情况讨论,然后运用割补法就可解决问题;(4)由于直角顶点不确定,故需分情况讨论,只需分∠QRB=90°和∠RQB=90°两种情况讨论,即可解决问题.【解答】解:(1)如图①,∵△ABC是等边三角形,∴∠ACB=∠B=60°.∵PQ∥BC,∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,∴△APQ是等边三角形.∴PQ=AP=2t.∵△PQR是等边三角形,∴QR=PQ=2t;(2)过点A作AG⊥BC于点G,如图②,则点R运动的路程长是AG+CG.在Rt△AGC中,∠AGC=90°,sin60°==,cos60°==,AC=4,∴AG=2,CG=2.∴点R运动的路程长2+2;(3)①当0<t≤时,如图③,S=S菱形APRQ=2×S正△APQ=2××(2t)2=2t2;②当<t≤1时,如图④PE=PCosin∠PCE=(4﹣2t)×=2﹣t,∴ER=PR﹣PE=2t﹣(2﹣t)=3t﹣2,∴EF=ERotanR=(3t﹣2)∴S=S菱形APRQ﹣S△REF=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;(3)t=或t=提示:①当∠QRB=90°时,如图⑤,cos∠RQB==,∴QB=2QR=2QA,∴AB=3QA=6t=4,∴t=;②当∠RQB=90°时,如图⑥,同理可得BC=3RC=3PC=3(4﹣2t)=4,∴t=.【点评】本题主要考查了等边三角形的判定与性质、特殊角的三角函数值、等边三角形的面积公式(等边三角形的面积等于边长平方的倍)等知识,运用分类讨论的数学思想是解决本题的关键.24.如图①,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A、B,点A、B的坐标分别是(﹣1,0)、(4,0),与y轴交于点C,点P在第一、二象限的抛物线上,过点P作x轴的平行线分别交y轴和直线BC于点D、E,设点P的横坐标为m,线段DE的长度为d.(1)求这条抛物线对应的函数表达式;(2)当点P在第一象限时,求d与m之间的函数关系式;(3)在(2)的条件下,当PE=2DE时,求m的值;(4)如图②,过点E作EF∥y轴交x轴于点F,直接写出四边形ODEF的周长不变时m的取值范围.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,可得答案;(4)根据周长公式,可得答案.【解答】解:(1)由题意,得解得∴这条抛物线对应的函数表达式是y=﹣x2+3x+4;(2)当x=0时,y=4.∴点C的坐标是(0,4).设直线BC的函数关系式为y=kx+b.由题意,得解得∴直线BC的函数关系式为y=﹣x+4,∵PD∥x轴,∴yP=yE=﹣m2+3m+4..∴xE=﹣m2+3m.图①,当0<m<3时,如图①,d=﹣m2+3m.当3<m<4时,如图②,d=m2﹣3m.(3)当0<m<3时,DE=﹣m2+3m,PE=﹣m2+4m.∵PE=2DE,∴﹣m2+4m=2(﹣m2+3m).解得m1=0(不合题意,舍去),m2=2.当3<m<4时,DE=m2﹣3m,PE=﹣m2+4m.∵PE=2DE,∴﹣m2+4m=2(m2﹣3m).解得m1=0(不合题意,舍去),m2=.当PE=2DE时,m=2或m=.(4)﹣1<m<0或3<m<4.解答如下:当0<m<3时,如图③,DE=﹣m2+3m,EF=﹣m2+3m+4.∴C=2(﹣m2+3m+4﹣m2+3m)=﹣4m2+12m+8.当﹣1<m<0或3<m<4时,如图④、⑤,DE=m2﹣3m,EF=﹣m2+3m+4.∴C=2(﹣m2+3m+4+m2﹣3m)=8.综上所述:四边形ODEF的周长不变时m的取值范围是﹣1<m<0或3<m<4.【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题关键;利用矩形的周长公式是解题关键.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。