资源资源简介:
广州市番禺区2016年中考数学一模试卷含答案解析2016年广东省广州市番禺区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.下列运算正确的是()A.a2+3a2=4a4 B.3a2oa=3a3 C.(3a3)2=9a5 D.(2a+1)2=4a2+12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.下列图形中,是中心对称图形的是()A. B. C. D.4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3 B.1.2×10﹣3 C.1.239×10﹣2 D.1.239×10﹣45.如图,△ABC内接于⊙O,若∠AOB=110°,则∠ACB的度数是()A.70° B.60° C.55° D.50°6.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.77.已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线上,当x1<0<x2<x3时,y1、y2、y3的大小关系是()A.y1<y2<y3 B.y1<y3<y2 C.y3<y1<y2 D.y2<y3<y18.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.9.若+(y﹣3)2=0.则xy的值为()A.﹣8 B.8 C.9 D.10.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= B.y= C.y= D.y=二、填空题(本大题共6小题,每小题3分,满分18分.)11.不等式x﹣1≤10的解集是.12.方程组的解是.13.若分式的值为0,则x的值为.14.分解因式:x2y﹣6xy+9y=.15.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.16.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.解方程:x2+2x﹣5=0.18.已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.19.已知=,求的值.20.如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.21.某校初三(1)班50名学生需要参加体育"五选一"自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目 人数 频率立定跳远 9 0.18三级蛙跳 12 a一分钟跳绳 8 0.16投掷实心球 b 0.32推铅球 5 0.10合计 50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求"一分钟跳绳"对应扇形的圆心角的度数;(3)在选报"推铅球"的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.22.如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).23.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)24.如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.25.如图,在梯形ABCD中,∠ABC=∠BAC=90°,在AD上取一点E,将△ABE沿直线BE折叠,使点A落在BD上的G处,EG的延长线交直线BC于点F.(1)试探究AE、ED、DG之间有何数量关系?说明理由;(2)判断△ABG与△BFE是否相似,并对结论给予证明;(3)设AD=a,AB=b,BC=c.①当四边形EFCD为平行四边形时,求a、b、c应满足的关系;②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.2016年广东省广州市番禺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.下列运算正确的是()A.a2+3a2=4a4 B.3a2oa=3a3 C.(3a3)2=9a5 D.(2a+1)2=4a2+1【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂的乘法法则,积的乘方的性质,完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、错误,应等于4a2;B、3a2.a=3a3,正确;C、错误,应等于9a6;D、错误,应等于4a2+4a+1.故选B.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.3.下列图形中,是中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念判断即可.【解答】解:A不是中心对称图形.故错误;B不是中心对称图形.故错误;C不是中心对称图形.故错误;D是中心对称图形.故正确.故选:D.4.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()g/cm3.A.1.239×10﹣3 B.1.2×10﹣3 C.1.239×10﹣2 D.1.239×10﹣4【考点】科学记数法-表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001239g/cm3,则用科学记数法表示该数为1.239×10﹣3g/cm3.故选:A.5.如图,△ABC内接于⊙O,若∠AOB=110°,则∠ACB的度数是()A.70° B.60° C.55° D.50°【考点】三角形的外接圆与外心.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠ACB与∠AOB是同弧所对的圆周角与圆心角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选C.6.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°o(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)o180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.7.已知点(x1,y1)、(x2,y2)、(x3,y3)在双曲线上,当x1<0<x2<x3时,y1、y2、y3的大小关系是()A.y1<y2<y3 B.y1<y3<y2 C.y3<y1<y2 D.y2<y3<y1【考点】反比例函数图象上点的坐标特征.【分析】由反比例系数k=5>0可知,反比例的函数图象过一、三象限,由此可得出y1<0,再结合反比例函数在第一象限单调递减即可得出y2>y3>0,由此即可得出结论.【解答】解:∵k=5>0,∴反比例函数图象过一、三象限.又∵x1<0,∴y1<0.当x>0时,反比例函数单调递减,又∵0<x2<x3,∴y2>y3>0.综上可知:当x1<0<x2<x3时,y1<y3<y2.故选B.8.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.9.若+(y﹣3)2=0.则xy的值为()A.﹣8 B.8 C.9 D.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质可求出x、y的值,再将x、y代入xy中求解即可.【解答】解:∵+(y﹣3)2=0,∴x=﹣2,y=3;∴xy=(﹣2)3=﹣8.故选:A.10.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= B.y= C.y= D.y=【考点】根据实际问题列二次函数关系式.【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【解答】解:作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC﹣AF=AC﹣DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a2=x2.故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.不等式x﹣1≤10的解集是x≤11.【考点】解一元一次不等式.【分析】首先移项,然后合并同类项即可求解.【解答】解:移项,得:x≤10+1,则不等式的解集是:x≤11.故答案是:x≤11.12.方程组的解是.【考点】解二元一次方程组.【分析】两式相加可化去y,再将x的值代入x﹣3y=8,解得即可.【解答】解:,用①+②得:3x=15,即x=5,把x=5代入②得:5﹣3y=8,解得:y=﹣1,∴方程组的解为.故答案为:.13.若分式的值为0,则x的值为2.【考点】分式的值为零的条件.【分析】分式的值为零,则分子等于零,即x﹣2=0.【解答】解:依题意得:x﹣2=0,解得x=2.经检验x=2符合题意.故答案是:2.14.分解因式:x2y﹣6xy+9y=y(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)215.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为y=﹣(x+1)2+3.【考点】二次函数图象与几何变换.【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线y=﹣x2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(﹣1,3),根据抛物线的顶点式可求平移后抛物线的解析式.【解答】解:根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,3),∴平移后抛物线解析式为:y=﹣(x+1)2+3.故答案为:y=﹣(x+1)2+3.16.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是y=.【考点】坐标与图形变化-旋转;待定系数法求反比例函数解析式.【分析】利用∠COD的正切值列式求出CD的长度,然后写出点D的坐标,再利用待定系数法求反比例函数解析式解答即可.【解答】解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故答案为:y=.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.解方程:x2+2x﹣5=0.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把常数项移到等号的右边,再在左右两边同时加上一次项系数2的一半的平方,配成完全平方的形式,然后开方即可.【解答】解:x2+2x﹣5=0x2+2x=5,x2+2x+1=6,(x+1)2=6,x+1=±,x1=﹣1+,x2=﹣1﹣.18.已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.【解答】解:(1)把x=2代入y=﹣,得:y=﹣k,把A(2,﹣k)代入y=kx﹣6,得:2k﹣6=﹣k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,则A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,解方程组,得:或,所以B点坐标为(1,﹣4),所以B点在第四象限.19.已知=,求的值.【考点】分式的化简求值.【分析】先根据分式的减法法则把原式进行化简,再把+的值代入进行计算即可.【解答】解:原式====+=.20.如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】运用平行四边形的性质得到相关的线段、角相等,从而证明两个三角形全等.【解答】解:猜想:BE∥DF,BE=DF.证明:证法一:如图1∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2,又∵CE=AF,∴△BCE≌△DAF.∴BE=DF,∠3=∠4.∴BE∥DF.证法二:如图2连接BD,交AC于点O,连接DE,BF,∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF.∴EO=FO.∴四边形BEDF是平行四边形.∴BEDF.21.某校初三(1)班50名学生需要参加体育"五选一"自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目 人数 频率立定跳远 9 0.18三级蛙跳 12 a一分钟跳绳 8 0.16投掷实心球 b 0.32推铅球 5 0.10合计 50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求"一分钟跳绳"对应扇形的圆心角的度数;(3)在选报"推铅球"的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.【考点】游戏公平性;简单的枚举法;扇形统计图.【分析】(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出"一分钟跳绳"对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.【解答】解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,AB、AC、BC是男生组合,∴抽取的两名学生中至多有一名女生的概率为:.22.如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.23.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)【考点】切线的判定与性质;勾股定理;扇形面积的计算;作图-复杂作图.【分析】(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得"线段BD、BE与劣弧DE所围成的图形面积为:S△ODB﹣S扇形ODE=2﹣π".【解答】解:(1)如图:连接OD,∵OA=OD,∴∠OAD=∠ADO,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AC∥OD,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,即直线BC与⊙O的切线,∴直线BC与⊙O的位置关系为相切;(2)设⊙O的半径为r,则OB=6﹣r,又BD=2,在Rt△OBD中,OD2+BD2=OB2,即r2+(2)2=(6﹣r)2,解得r=2,OB=6﹣r=4,∴∠DOB=60°,∴S扇形ODE==π,S△ODB=ODoBD=×2×2=2,∴线段BD、BE与劣弧DE所围成的图形面积为:S△ODB﹣S扇形ODE=2﹣π.24.如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.【考点】反比例函数综合题;一次函数的性质;二次函数的最值.【分析】(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=oto(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.【解答】解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=oto(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.25.如图,在梯形ABCD中,∠ABC=∠BAC=90°,在AD上取一点E,将△ABE沿直线BE折叠,使点A落在BD上的G处,EG的延长线交直线BC于点F.(1)试探究AE、ED、DG之间有何数量关系?说明理由;(2)判断△ABG与△BFE是否相似,并对结论给予证明;(3)设AD=a,AB=b,BC=c.①当四边形EFCD为平行四边形时,求a、b、c应满足的关系;②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.【考点】相似形综合题.【分析】(1)由折叠得到∠EGB=∠EAB=90°,再利用勾股定理即可;(2)先判断△EAB≌△EGB,然后∠ABG=∠EFB和∠BAG=∠FBE,即得等到结论;(3)由(2)中的结论△ABG∽△BFE得出结论,再判定出△ABD∽△HCD得出比例式,就找到结论,再由根与系数的关系,判断计算即可.【解答】解(1)AE2+DG2=ED2;理由:据折叠性质得:△EAB≌△EGB,AE=GE,∠EGB=∠EAB=90°,∴在Rt△EGD中,由勾股定理得:EG2+DG2=ED2,∴AE2+DG2=ED2,(2)△ABG∽△BFE.理由:∵∠ABC=∠BAC=90°∴AD∥BC,∴∠AEB=∠EBF,∵△EAB≌△EGB,∠AEB=∠BEG,∴∠EBF=∠BEF,∴FE=FB,即△FEB为等腰三角形.∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,∴∠ABG=∠EFB.在等腰△ABG和△FEB中,∠BAG=÷2,∠FBE=÷2,∴∠BAG=∠FBE.∴△ABG∽△BFE.(3)①∵△ABG∽△BFE,∴∠EFB=∠GBA,∴∠C=∠ABG,∵∠DAB=∠DHC=90°,∴△ABD∽△HCD,∴,∴,∴a2+b2=ac.②当b=2时,设关于a的一元二次方程a2﹣ac+22=0的两根为a1,a2,得:a1oa2=c>0,a1+a2=4>0,∴a1>0,a2>0,由题意a1=a2,∴△=0,即c2﹣16=0,∵c>0,∴c=4,∴a=2,∴H为BC中点,且ABHD为正方形,∴DH=HC,∴∠C=45°.2016年6月16日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。