资源资源简介:
广东省2016年中考数学模拟试卷含答案解析2016年广东省中考数学模拟试卷(一)一、选择题(本大题10小题.每小题3分,共30分)1.下列各数中,与3互为相反数的是()A.B.﹣3C.3﹣1D.﹣2.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.83.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=xC.x3ox﹣2=x﹣5D.x3÷x2=x4.若x,y为实数,且|x+4|+=0,则()2015的值为()A.1B.﹣1C.4D.﹣45.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58°B.59°C.61°D.62°6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲B.乙C.丙D.丁7.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°8.用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=4D.(x﹣3)2=49.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A.B.C.D.10.若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题6小题.每小题4分.共24分)11.化简:=.12.我国首个火星探测器"萤火一号"已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380000000公里抵达火星轨道并定位.将380000000公里用科学记数法可表示为公里.13.八边形的内角和等于度.14.如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为.15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为.16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.三、解答题(本大题3小题,每小期6分.共18分)17.解不等式组:.18.先化简,再求值:÷+,其中x=.19.如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.四、解答题(二)(本大题3小题.每小兹7分,共21分)20.在我市实施"城乡环境综合治理"期间,某校组织学生开展"走出校门,服务社会"的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别 频数 频率文明宣传员 4 0.08文明劝导员 10 义务小警卫 8 0.16环境小卫士 0.32小小活雷锋 12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.21.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.22.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?五、解答題(三)(本大题3小题.每小题9分,共27分)23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.24.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.25.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=cm2;当x=s时,y=cm2.(2)当5≤x≤14时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.2016年广东省中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题.每小题3分,共30分)1.下列各数中,与3互为相反数的是()A.B.﹣3C.3﹣1D.﹣【考点】相反数;负整数指数幂.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣3与3互为相反数,故B正确;故选:B.2.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.8【考点】由三视图判断几何体.【分析】根据主视图以及左视图可得出该小正方形共有两行搭成,俯视图可确定几何体中小正方形的列数.【解答】解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1;左视图有两列,每列的方块数分别是:1,2;俯视图有三列,每列的方块数分别是:2,1,2;因此总个数为1+2+1+1+1=6个,故选B.3.下列运算正确的是()A.x3+x2=x5B.x3﹣x2=xC.x3ox﹣2=x﹣5D.x3÷x2=x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;负整数指数幂.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.4.若x,y为实数,且|x+4|+=0,则()2015的值为()A.1B.﹣1C.4D.﹣4【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得x+4=0,y﹣4=0,解得x=﹣4,y=4,则()2015=﹣1.故选:B.5.如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58°B.59°C.61°D.62°【考点】平行线的性质.【分析】得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质即可得到结论.【解答】解:延长DC到F,∵EC⊥CD,∴∠DCE=90°,∵∠2=29°,∴∠3=61°,∵AB∥CD,∴∠1=∠361°,故选C.6.在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25,∴S乙2>S甲2>S丁2>S丙2,∴三月份苹果价格最稳定的超市是丙;故选C.7.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【考点】全等三角形的性质.【分析】根据全等三角形的性质得到∠ACB=∠A′C′B′,根据角的和差计算得到答案.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′C′B′,∴∠ACB﹣∠A′CB=∠A′C′B′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选:B.8.用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=4D.(x﹣3)2=4【考点】解一元二次方程-配方法.【分析】先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.【解答】解:x2﹣6x+9=4,(x﹣3)2=4.故选D.9.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1的长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.10.若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据mn<0,可得m和n异号,然后对m的符号进行讨论,根据正比例函数和反比例函数的性质判断.【解答】解:∵mn<0,∴当m>0时,n<0,此时正比例函数y=mx经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象;当m<0时,n>0,此时正比例函数y=mx经过第二、四象限,反比例函数图象经过一、三象限,B符合条件.故选B.二、填空题(本大题6小题.每小题4分.共24分)11.化简:=1.【考点】分式的加减法.【分析】先将第二项变形,使之分母与第一项分母相同,然后再进行计算.【解答】解:原式=.故答案为1.12.我国首个火星探测器"萤火一号"已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380000000公里抵达火星轨道并定位.将380000000公里用科学记数法可表示为3.8×108公里.【考点】科学记数法-表示较大的数.【分析】科学记数法的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大与10时,n是正整数;当原数的绝对值小于1时,n是负数.【解答】解:根据题意380000000公里=3.8×108公里.13.八边形的内角和等于1080度.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)o180°,代入公式就可以求出内角和.【解答】解:(8﹣2)×180°=1080°.故答案为:1080°.14.如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为(4,2)或(﹣4,﹣2).【考点】位似变换;坐标与图形性质.【分析】利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行求解.【解答】解:∵以O为位似中心,按比例尺1:2,把△AOB放大,∴点A的对应点A′的坐标为(2×2,2×1)或(﹣2×2,﹣2×1),即(4,2)或(﹣4,﹣2).故答案为(4,2)或(﹣4,﹣2).15.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为0<x<3.【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线y1=k1x+b在直线y2=k2x+b上方且直线y2=k2x+b在x轴上方所对应的自变量的范围即可.【解答】解:当x=﹣1时,y1=k1x+b=0,则x>﹣1时,y1=k1x+b>0,当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,因为x>0时,y1>y2,所以当0<x<3时,k1x+b>k2x+b>0,即不等式组k1x+b>k2x+b>0的解集为0<x<3.故答案为0<x<3.16.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是﹣1.【考点】正方形的性质;旋转的性质.【分析】连接D′C,根据旋转的性质及正方形的性质分别求得△ABC与△CD′E的面积,从而不难求得重叠部分的面积.【解答】解:连接D′C,∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.故答案为:﹣1.三、解答题(本大题3小题,每小期6分.共18分)17.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出不等式组中两个一元一次不等式的解集,然后根据同大取大,同小取小,大小小大取中间,大大小小无解的法则,即可求出原不等式组的解集.【解答】解:解不等式4x﹣8<0,得x<2;解不等式,得2x+2﹣6<3x,即x>﹣4,所以,这个不等式组的解集是﹣4<x<2.18.先化简,再求值:÷+,其中x=.【考点】分式的化简求值.【分析】先把分子分母因式分解和把除法运算化为乘法运算,然后约分后进行同分母的加法运算,再把x的值代入计算即可.【解答】解:原式=o+=+=,当x=时,原式==.19.如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.【考点】菱形的判定;全等三角形的判定.【分析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据"一组邻边相等的平行四边形是菱形",先证明OABC是个平行四边形,然后证明OA=AB即可.【解答】解:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.四、解答题(二)(本大题3小题.每小兹7分,共21分)20.在我市实施"城乡环境综合治理"期间,某校组织学生开展"走出校门,服务社会"的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别 频数 频率文明宣传员 4 0.08文明劝导员 10 义务小警卫 8 0.16环境小卫士 0.32小小活雷锋 12 0.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据总数=频数÷频率进行计算总人数;(2)首先根据各小组的频数和等于总数以及各小组的频率和等于1或频率=频数÷总数进行计算,然后正确补全即可;(3)根据样本中文明劝导员所占的频率来估算总体.【解答】解:(1)总人数=4÷0.08=50;(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:服务类别 频数 频率文明宣传员 4 0.08文明劝导员 10 0.2义务小警卫 8 0.16环境小卫士 16 0.32小小活雷锋 12 0.24(3)参加文明劝导的学生人数=900×0.2=180人.21.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.【考点】解直角三角形的应用-仰角俯角问题.【分析】在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,tanA=,∴AD==90×=90.在Rt△BCD中,∠CDB=90°,tanB=,∴DB==30.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.22.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【考点】分式方程的应用.【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.五、解答題(三)(本大题3小题.每小题9分,共27分)23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【考点】切线的判定与性质.【分析】(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.【解答】解:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.24.如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【考点】二次函数综合题.【分析】(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.【解答】解:(1)∵抛物线与y轴交于点(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0)根据题意,得,解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.由顶点坐标公式得顶点坐标为D(1,4)设对称轴与x轴的交点为F∴四边形ABDE的面积=S△ABO+S梯形BOFD+S△DFE=AOoBO+(BO+DF)oOF+EFoDF=×1×3+×(3+4)×1+×2×4=9;(3)相似,如图,BD=;∴BE=DE=∴BD2+BE2=20,DE2=20即:BD2+BE2=DE2,所以△BDE是直角三角形∴∠AOB=∠DBE=90°,且,∴△AOB∽△DBE.25.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=2cm2;当x=s时,y=9cm2.(2)当5≤x≤14时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.【考点】二次函数综合题.【分析】(1)当x=2s时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y的值,当x=s时,三角形PAQ的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14时,求y与x之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.(3)可以由已知条件求出S梯形ABCD,然后根据条件求出y值,代入当5≤x≤9时的解析式就可以求出x的值.(4)利用相似三角形的性质,相似三角形的对应线段成比例就可以求出对应的x的值.【解答】解:(1)当x=2s时,AP=2,BQ=2,∴y==2当x=s时,AP=4.5,Q点在EC上∴y==9故答案为:2;9(2)当5≤x≤9时(如图1)y=S梯形ABCQ﹣S△ABP﹣S△PCQ=(5+x﹣4)×4×5(x﹣5)(9﹣x)(x﹣4)y=x2﹣7x+当9<x≤13时(如图2)y=(x﹣9+4)(14﹣x)y=﹣x2+x﹣35当13<x≤14时(如图3)y=×8(14﹣x)y=﹣4x+56;(3)当动点P在线段BC上运动时,∵S梯形ABCD=×(4+8)×5=8∴8=x2﹣7x+,即x2﹣14x+49=0,解得:x1=x2=7∴当x=7时,S梯形ABCD(4)设运动时间为x秒,当PQ∥AC时,BP=5﹣x,BQ=x,此时△BPQ∽△BAC,故=,即=,解得x=;当PQ∥BE时,PC=9﹣x,QC=x﹣4,此时△PCQ∽△BCE,故=,即=,解得x=;当PQ∥BE时,EP=14﹣x,EQ=x﹣9,此时△PEQ∽△BAE,故=,即=,解得x=.综上所述x的值为:x=、或.2016年7月3日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。