资源资源简介:
教材:函数的奇偶性
目的:要求学生掌握函数奇偶性的定义,并掌握判断函数奇偶性的基本方法。
过程:
一、复习函数单调性的定义、单调区间及判断函数单调性的方法。
二、提出课题:函数的第二个性质――奇偶性
1.依然观察 y=x2与 y=x3 的图象――从对称的角度
.观察结果:
y=x2的图象关于轴对称
y=x3的图象关于原点对称
3.继而,更深入分析这两种对称的特点:
①当自变量取一对相反数时,y取同一值.
f(x)=y=x2 f(1)=f(1)=1
即 f(x)=f(x)
再抽象出来:如果点 (x,y) 在函数y=x2的图象上,则该点关于y轴的对称点 (x,y) 也在函数y=x2的图象上.
②当自变量取一对相反数时,y亦取相反数.
f(x)=y=x3 f(1)=f(1)=1
即 f(x)=f(x)
再抽象出来:如果点 (x,y) 在函数y=x3的图象上,则该点关于原点的对称点 (x,y) 也在函数y=x3的图象上.
4.得出奇(偶)函数的定义(见P61 略)
注意强调:①定义本身蕴涵着:
函数的定义域必须是关于原点的对称区间――这是奇(偶)函数的必要条件――前提
②"定义域内任一个":
意味着不存在"某个区间上的"的奇(偶)函数――不研究
③判断函数奇偶性最基本的方法:
先看定义域,再用定义――f(x)=f(x) ( 或f(x)=f(x) )
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。