您当前的位置:免费教育资源网物理论文 → 文章内容

关于相对论与其解的时空分析


作者:佚名  来源:本站整理  发布时间:2008-8-20 15:57:08

,任意相对平直坐标系中有
(31)
在同一个相对平直坐标系中, 类比线元 ,但是不可以替代。
不同的相对平直坐标系比较时空观测值时,须使用时间量密度和空间量密
度,通过设定某一相对平直坐标系时间量密度和空间量密度为1,得到不同的相
对平直坐标系的不同时间量密度和空间量密度。然后,对不同的相对平直坐标系
换算出不同的时间量和空间量单位。
这样时空对称理论实际上是关于时空密度的变化的理论,可表示为:
(32)
为不同的两个相对平直坐标系时空密度, 为时空密度的变化量。
七。时空密度的变化量
在狭义相对论中
(33)
在Schwarzschild解中
(c=1) (34)
引力 (35)
根据等效原理有惯性质量等于引力质量,或在局域时空内惯性力和引力不
可区分,在本文中局域时空为相对平直坐标系代替,那么在相对平直坐标系中
(36)
(37)
(38)
所以有:
(39)
在狭义相对论和Schwarzschild解中
(33)
那么,时空对称理论中,时空密度变化量 ,在 时,
(33)
这样 (37)
变为 (40)
此积分为不定积分。
这里 是能量的一种形式。用四维时空观点看, 是二阶逆变二阶
协变张量而不是狭义速度矢量的平方。
时空对称理论在 时表示为
(41)
为须观测的坐标系的时空密度; 为观测者所在的坐标系的时空密度,时间密度,空间密度; 是能量的一种形式。哪个坐标系绝对地得到能量,这个坐标系的时空密度绝对地改变。
八。时空对称理论和狭义相对论
假设两个相对平直坐标系,一个静止,一个角速度为 做圆周运动。
用时空对称理论分析
(42)
对于角速度为 的坐标系,离心力为 ( r 为圆周半径),
即 (43)
(44)
所以,时空密度的变化量 为
(45)
有 (46)
对于固有时 和固有长度 有
(47)
用狭义相对论分析固有时和固有长度有
(48)(是速度方向)
可以看出两理论对固有时有相同结论;对于固有长度,时空对称理论认为
固有长度全方向改变,狭义相对论认为只是平行瞬间速度 方向的固有长度
改变。
用时空对称理论和狭义相对论分析以速度 v做直线运动的坐标系也有相同
结论,只不过时空对称理论将以速度 v做直线运动的坐标系当做绕无穷远处某
点做圆周运动。
对于迈克耳逊-莫雷实验,狭义相对论是用惯性系中光速恒定来解释,时空
对称理论是用相对平直坐标系中光速不变来解释。
九。时空对称理论的详细表述
假设1:设有时空坐标系
(28)
(即光速恒定, 项观测不到 )
是指此坐标系内任意点光的速度, 指此坐标系内任意点的固有时。
此类坐标系称为相对平直坐标系。
假设2:任何观测者所观测到的真实时空坐标系都是相对平直坐标系。
不论是惯性系或非惯性系,只要坐标系足够小,都是此类坐标系。
相对平直坐标系之间比较时空量,使用时空密度
(31)
是时间密度 , 是空间密度。
在任一相对平直坐标系中,观测者处在相同的时空密度 中,就有相同
的时间密度 和 空间密度 ,因而有相同的固有时和固有长度。
的大小正比于固有时流逝的快慢。
的大小正比于固有长度的长短。
时空对称理论可表述为
(32)
为不同相对平直坐标系的时空密度。
当 ,有 (42)
(40)
用四维时空观点看是二阶逆变二阶协变张量。
时空对称理论认为 是能量的一种形式,而不是狭义的速度平方或加速
度,或二阶逆变二阶协变张量,上式的积分为不定积分。
当能量形式 绝对的改变,时空密度 绝对的改变。
十。时空对称理论对不同坐标系之间的观测比较
时空对称理论对不同坐标系之间的观测比较可简单的分为两种情况。其计
算结果是真实观测值。
1。两个相对平直坐标系 , 比较,有时空密度 ,
假设:
那么: (42)
为两坐标系时空密度的比较
坐标系 的固有时比坐标系 的固有时流逝快。
坐标系 的固有长度比坐标系 的固有长度长。
并通过 (40)
与经典的速度,引力和加速度对比,从而得到不同坐标系的固有时和固有
长度的区别。
2。设有三个坐标系 ,时空密度分别为 ,
假设

(32.1)
(49)
其中( , )
不论观测者在 坐标系都将得到(49)式观测结果,观测者在第四坐标系也将得到(49)式观测结果,这是时空对称理论中所得计算结果是真实观测
值的推论,也是时空对称理论的两个假设的推论。
十一。关于时空对称理论可能的实验证实
一种是检测高速自转物体的半径和厚度是否缩短?
这种情况下,狭义相对论认为只有沿速度方向的周长缩短,半径和厚度不
变。而时空对称理论认为周长,半径和厚度都将缩短。半径缩短后为
(略去 以后项) (49)
项与Kerr-Newman解中的单位质量角动量项a一致。
厚度缩短后为
(50)
另外一种是一个加速运动坐标系与相对静止的坐标系之间,在 的情况下,将有时空密度 的变化。
那么,当发射光谱的元素做加速运动时,将有类似引力红移的光谱红移现
象。
如果,是发射光谱的元素静止,而观测光谱的仪器和观测者做加速运动,
将有光谱紫移现象。
除去多普勒效应,由振动频率公式可得,光谱线发生红移时,移动的频率
为: (51)
是光子的固有振动频率
很显然,对于相对平直坐标系中的物体而言,当 时,物体进入类似黑洞事件视界的另一种事件视界。
参 考 文 献
A.爱因斯坦 相对论的意义 科学出版社 1961
E.G.哈里斯 现代理论物理导论 上海科学技术出版社 1975
张镇九 现代相对论及黑洞物理学 华中师范大学出版社 1986
王仁川 广义相对论引论 中国科学技术出版社 1996
俞允强 广义相对论引论 北京大学出版社 1997
赵峥 黑洞的热性质与时空奇异性 北京大学出版社 1999



附 录
(用时空对称理论解释光子轨线的引力偏折和水星近日点进动)
广义相对论中求质点和光子的轨道方程时,取球坐标,认为运动满足于
, (1)
协变动量 和 是守恒量,有
(2)
E和L的物理意义,为观测者所测到的质点或光子的能量和角动量。
四维速度的归一条件 有
(3)
得到质点的轨道微分方程
(4)
光子的轨道微分方程
(5)
广义相对论用这两个轨道微分方程解释了光子的引力偏折和水星近日点
进动。
广义相对论用来解释引力红移的方法也一样适用于时空对称理论。这里
就不重复了。只讨论时空对称理论解释光子轨线的引力偏折和水星近日点进动。
因为时空对称理论是用真实观测值来解释时空的理论。用它得到的Schw-
arzschild解有
(6)
(7)
固有时的关系有
(8)
固有长度的关系有
(9)
为时空密度, 为时间密度, 为空间密度。
按固有时和固有长度来看,观测者在远离引力场的坐标系,观测引力场坐
标系有
(10)
是引力场坐标系固有时, 是远

上一页  [1] [2] 

  • 上一篇文章:等效原理的对与错
  • 下一篇文章:惯性力学与整体科学体系
  • 文章评论 (评论内容只代表网友观点,与本站立场无关!)

    用户名: 查看更多评论

    分 值:100分 85分 70分 55分 40分 25分 10分 0分

    内 容:

             (注“”为必填内容。) 验证码: 验证码,看不清楚?请点击刷新验证码

    关于本站 - 网站帮助 - 广告合作 - 下载声明 - 友情连接 - 网站地图 -