由一个有趣的数学题,三个瓶子,一个容量为10升,另外两个空容器分别为7升和3升。现在10升容器已装满,三个容器互倒,能否倒出两个五升的油?
经过一番思索,或许你已求出答案:能。那么是怎样解出来的呢?设(a,b,c)表示(10升容器之油量,7升容器之油量,3升容器之油量)我们可用采用“树形图”来表示:
采用“树形图”,可以把倒油的过程很清楚地表示出来,但这揭示出问题的本质了吗?如果是10升、4升、6升容器,又如何倒出两个五升呢?如果我们还用刚长的方法,将不能把结果表示出来,问题出在哪里呢?这种问题所反映的数学本质是什么呢?其实,我们用上面的方法虽然解出第一题,但并不是最好的,那么有没有用更好的方法来解决这类题呢?事实上经过认真的分析可知,对这几个容器倒好倒去,从数学上来看,无非是对某容器的容量进行加减运算。倒出两个5升,必然有5升油在7升的容器内。于是,我们可采用不定方程求解。
设往7升容器倒进x次,从7升容器往3升容器倒出y次,得:
这是个二元一次不定方程。
令(为整数),可以得出:
我们取不定方程的最小的正整数解这事实上正好反映的是树形图中的上一种倒法,如果10升满,4升、6升空,可列不定方程
为易知不此定方程无解,即此时无法分出两个5升的油来。
利用不定方程,我们还可以解决一些更复杂的同类问题。如果是50升满,空瓶23升和27升,能否倒出两个25升的来?
假设往27升的容器倒进x次,得
这一不定方程的通解为(其中k为整数)。
其最小正整数解为
可见这一问题的答案要:能。但过程可能很复杂,这就不再用“树形图”表示其过程了。
通过上面两个例子可以知道“类似这种题都可以用不定方程来解。在解数学题时,不要满足于眼前的答案,而是要去寻找问题的本质及它的规律。
高中各年级课程推荐
|
||||
年级
|
学期
|
课程名称
|
课程试听
|
|
高一 |
高一(上)、(下)同步复习
|
语文 | ||
英语 | ||||
数学 | ||||
数学(期中串讲) | ||||
数学(期末串讲) | ||||
数学拔高 | ||||
物理 | ||||
化学 | ||||
生物(一) | ||||
地理 | ||||
历史 | ||||
政治 | ||||
高中专项突破课
|
语文写作 | |||
英语阅读理解 | ||||
英语写作 | ||||
英语完形填空 | ||||
物理功和能量 | ||||
高二 |
高二(上)、(下)同步复习
|
语文 | ||
英语 | ||||
数学(理) | ||||
数学拔高(理) | ||||
数学(文) | ||||
数学拔高(文) | ||||
物理 | ||||
数学(期中串讲) | ||||
数学(期末串讲)(理) | ||||
数学(期末串讲)(文) | ||||
化学 | ||||
生物(一) | ||||
生物(二) | ||||
生物(三) | ||||
地理 | ||||
历史 | ||||
政治 | ||||
高三 |
高考第一轮复习
|
语文 | ||
英语 | ||||
数学(理) | ||||
数学拔高(理) | ||||
数学(文) | ||||
数学拔高(文) | ||||
物理 | ||||
物理拔高 | ||||
化学 | ||||
生物 | ||||
地理 | ||||
政治 | ||||
历史(韩校版) | ||||
历史(李晓风版) | ||||
高考第二轮复习
|
数学(理) | |||
数学(文) | ||||
英语 | ||||
物理 | ||||
化学 | ||||
地理 | ||||
高考第三轮冲刺串讲
|
语数英串讲(理) | |||
语数英串讲(文) | ||||
物化生串讲 | ||||
史地政串讲 | ||||
高考试题精讲
|
数学(理) | |||
英语 | ||||
化学 | ||||
物理 | ||||
2021高考研究2021高考策略(理) | ||||
2021高考研究2021高考策略(文) | ||||
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。