资源资源简介:
2019届中考数学专题《轴对称变换》复习练习含试卷分析答题技巧轴对称变换一、选择题1.下列图形中不是轴对称图形的是()A.等边三角形B.正方形C.平行四边形D.正五边形2.点(﹣1,﹣5)关于y轴的对称点为()A.(1,5)B.(﹣1,﹣5)C.(5,﹣1)D.(﹣1,5)3.与点P(5,-3)关于x轴对称的点的坐标是()A.(5,3)B.(-5,3)C.(-3,5)D.(3,-5)4.以下是我市著名企事业(新飞电器、心连心化肥、新乡银行、格美特科技)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为()A.B.C.5D.66.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形A.1B.2C.3D.47.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.8.在下列黑体大写英文字母中,不是轴对称图形的是()A.B.C.D.9.下列图案,既是轴对称图形又是中心对称图形的个数是A.1个B.2个C.3个D.4个10.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.二、填空题11.在"线段、圆、等边三角形、正方形、角"这五个图形中,对称轴最多的图形是________.12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.13.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.14.△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC、AB、AC边上的动点,则△PQR周长的最小值为________15.把点A(a,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为________.16.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.17.如图,在△ABC中,∠ACB=90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.18.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为________°.三、解答题19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.如图,在平面直角坐标系内,已知点A的位置;点B的坐标为(3,3);点C的坐标为(5,1).(1)写出A的坐标,并画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形ABB1A1的面积.21.将军在B处放马,晚上回营,需要将马赶到河CD去饮水一次,再回到营地A,已知A到河岸的距离AE=2公里,B到河岸的距离BF=3公里,EF=12公里,求将军最短需要走多远.22.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.23.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.参考答案一、选择题1.C2.D3.A4.D5.A6.B7.B8.C9.A10.A二、填空题11.圆12.-6.13.M1793614.15.﹣16.(2,﹣2)17.218.180三、解答题19.解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短20.解:(1)由图可知,A(1,﹣4);结论:所以△ABC即为所求作的三角形;(2)所以△A1B1C1即为所求作的三角形;(3)画出梯形的高AD,点A1、B1、D的坐标分别为(﹣1,﹣4)、(﹣3,3)、(1,3)因此S四边形ABB1A1=×(2+6)×7=28.21.解:作A点关于河岸的对称点A′,连接BA′交河岸与P,连接A′B′,则BB′=2+3=5,则PB+PA=PB+PA′=BA′最短,故将军应将马赶到河边的P地点.作FB′=EA′,且FB′⊥CD,∵FB′=EA′,FB′⊥CD,BB′∥A′A,∴四边形A′B′BA是矩形,∴B'A'=EF,在Rt△BB′A′中,BA′==13,答:将军最短需要走13公里22.(1)解:所作图形如图1所示:(2)解:连接AD,如图1.∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=120°,∴2∠ACE+60°+60°=180°,∴∠ACE=30°(3)解:线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图2.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,∴∠EDA=∠EBA,∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,又∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.23.(1)解:如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:(2)解:如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。