表内乘除法口算教学是小学数学义务教材第三册的重点,又是学习多位数乘除法的基
础。对此我们作了以 下初步的研究。
一、变“分散教学”为“集中教学”,变“注入式”教学为
“启发式”教学
1988年以前,我们采取的是“分散教学”的常规教法。即按目前义务教材的编排形
式(原现行教材与 此基本相同),将表内乘除法分为表内乘法(一)(2—6的乘法口诀),
表内除法(一)(有2—6的乘法 口诀求商)与表内乘法和表内除法(7—9的乘法口诀和
用口诀求商)进行教学。据我们十多年的教学实践表 明,这种“分散教学”的常规教法,
对大面积提高表内乘除法口算教学的质量起了积极的促进作用。
1988年以后,我们开始采取“集中教学”的非常规教法,并对两种教法作比较研究,
逐步形成了有自 己特色的口算训练方法与理论。在“集中教学”中,我们对教材作了调整
与组合,将表内乘除法分为表内乘法 与表内除法两块进行教学,并以表内乘法的教学为重
点。即把乘法口诀集中起来教学,将乘法与除法划分开来 教学,突出重点,以“乘”促“除”。
由于表内除法是从表内乘法运算的可逆联想着手进行的,它利用一句乘 法口诀逆算的正迁
移来口算同一被除数的一组除法。例如,18÷2=?,想:二( )十八,商是几;18 ÷
9=?,想( )九十八,商是几。在掌握同一被除数的一组除法后,同样的方法又有利于
迁移到另一组除 法运算中去。因此,以乘法九九口诀作为表内乘除法运算的主体结构,以
“乘”促“除”,其心理学的依据就 在于此。我们近五年来的研究表明:按“分散教学”形
式进行表内乘除法教学约需60课时,而按“集中教学 ”形式进行教学只需35课时,大
大节约了教学时间,且又可进一步提高表内乘除法口算教学的质量。
在表内乘法的教学中,较为普遍的教法是:根据乘法算式,由教师把乘法口诀编写出来,
再让学生反复读 ,仅从现象上揭示了编口诀的规律,割裂了乘法意义与编口诀规律的内在
联系,加重了学生记忆的负担,应该 说这是“注入式”的教学。
我们坚持采用“启发式”教学,从实质上揭示编口诀的规律。例如,根据6×3=18
编口诀,先让学生 思考:“这个算式表示什么意思?”然后告诉学生:“为了很快地记住这
个算式的结果,我们来编句口诀,因 为这个算式表示‘三个六相加得十八’,所以它可简化
为‘三个六,十八’,再简化一点,就是‘三六十八’ 。”这样揭示,把乘法算式的意义与
编口诀的规律有机结合起来,有利于口诀的记忆和运用。在教学乘法口诀 前,我们预先在
每个教室里挂出一张乘法口诀表(未学部分用纸盖住,给每个学生发一张空白的乘法口诀表。
教师教一组口诀,揭开一组;学生学一组口诀,填写一组;激发了学生求知欲,并使学生较
快地对口诀表形成 完整的认识。在教学2—4的乘法口诀时,我们重点使学生理解口诀的
来源和推导方法,组织学生讨论各组口 诀的编排特点,如每组口诀句数的特点,每组口诀
中被乘数、乘数、积变化的特点,然后引导学生总结口诀的 编写方法。在教学5—9的乘
法口诀时,开始逐步放手让学生自编乘法口诀。这样,不仅节省了教学时间,又 有助于理
解和记忆乘法口诀,并调动了学生智力活动的积极性和主动性。
二、针对口算能力形成的心理特征组织练习
学生表内乘除法口算能力形成的心理过程,可以分为三个阶段。第一阶段是能正确地以
口诀为中介抽象地 进行口算,能按照口算方法一步一步清晰地进行思考。口算的准确度,
联想思考方法的清晰度,是这个阶段口 算能力的主要特征。第二阶段是降低意识口诀的清
晰度,即减少想口诀所用的时间,提高口算的速度。能否简 缩联想,提高口算速度,是这
个阶段口算能力的主要特征。第三阶段是不用意识到口诀口算,使口算自动化。 学生感知
算式后,不再想口诀,就立即说出或写出得数。不用意识到口诀口算,是这个阶段口算能力
的主要特 征。
当学生的口算能力处于第一阶段时,口算练习不宜多,口算速度要放慢,以确保口算的
准确度,以及口算 思考过程的清晰度。可多采用一些口算口答的形式,多让学生讲讲口算
思考的过程,务必使每个学生意识到算 什么,怎么算以及为什么这么算。只有让学生有了
对口算方法清晰的联想,才能为形成口算能力打下基础。
当学生的口算能力处于第二阶段时,应适当增加口算练习量,逐步提出限量口算的要求,
并针对错误频率 高的算式进行重点练习。可多采用一些口算笔答的形式,多采用如听算、
口算表、口算练习册等形式,还可以 让每个学生自制表内乘除法口算卡片,尽可能使人人
在课内都有较多的练习机会,逐步使学生建立起算式与得 数之间的直接联系。
当学生的口算能力处于第三阶段的前期时,这是从意识到口诀口算进入到不用意识到口
诀口算的关键时期 。这个时期口算的练习形式、口算的练习量、口算的练习次数、练习的
时间等设计至关重要。我们采取的“短 期集中训练”的方法(本文第三单元将作具体介绍)
极为有效,它可使每一个学生都较快地达到口算自动化的 程度。在这一阶段的后期,只需
坚持每天一两分钟的口算基本训练,或针对遗忘先快后慢的规律,采用分布练 习法,先是
隔日练习,再是隔周练习等等,直至学习多位数乘除法。这样遗忘可以减少,已形成的口算
能力也 得到了巩固。
三、消除口算能力形成中“高原现象”的实验
我们在长期的教学实践中发现:表内乘除法单元结束时,学生的口算能力基本上都能进
入第二阶段,各班 的口算口答平均水平在每分钟20题左右,口算笔答的平均水平在17
题左右。但此后相当长的一段时间内, 几乎大部分班级的口算水平提高不快,甚至在期末
结束时,较多学生的口算能力也未能进入熟练阶段,未能实 现口算的自动化,出现了教学
心理学中所谓的“高原现象”。怎样消除表内乘除法口算能力形成中的“高原现 象”?我们
的研究表明:应该实施“短期集中训练”的方法。“短期集中训练”,是指在短期内集中一定
的时 间,设计一定量的口算练习,以完成对学生口算训练的强化过程。下面是1994年
的实验概况:
实验前,我们预先测定了四个实验班(对教材作调整组合,采取“集中教学”形式)和
五个对照班(忠实 于义务教材,采取“分散教学”形式)学完表内乘除法单元以后的口算
能力,证实各班学生相应的口算能力均 已进入“比较熟练”的层次,且实验班与对照班的
口算能力无显著的差异(P>0.05)。
实验中,对照班每节课前让学生口算笔答20题,课外练习40题,均不提口算时间的
要求,并按此练习 方式运作十二次,做到与实验班的练习题量相等。实验班则实施“短期
集中训练”的方法,即采用限时练习与 不限时练习交替,少量练习与多量练习相结合的方
法。每节课前让学生限时二分内完成印有120题口算题的 练习卷。其中,表内乘法占4
5%,表内除法占45%,20以内加减法占10%(主要是为了克服学生消极 思维定势
而安排的)。限时二分的练习教师批改,采集数据后,再将练习卷发回给学生,让他们在课
外用不限 时的方式做完剩下的口算题。按此练习方式运作六次后,非常显著地提高了学生
表内乘除法口算笔答的能力, 见表1。两个月之后进行的后效测试表明:虽然实验班学生
的口算能力略有下降,但与对照班的差异仍然十分 显著,见表2。
表1 短期集中练习前后的口算成绩比较
人数 X S Z 限时二 训练前 212 36.2 10.7 分的口 一天 21.59…
算 训练六天后 215 59.4 11.5 限时四 训练前 212 74.8 19.3 分
口算 一天 13.66… 100题 训练六天后 215 95.7 11.2
我们认为,限时(以二分左右为宜)少量口算的作用是:让学生尽量压缩、简化思维的
中间环节,充分发 挥口算的速度。时间过长,则不易达到上述目的。不限时大量口算(即
保证绝大部分学生有足够的时间进行1 00题左右的口算)的作用是:提高学生的口算的
熟练程度,培养学生良好的口算习惯。而习题量过少,则不 能使学生大脑皮层的相应区域
得到足够的刺激。
表2 实验班与对照班的口算成绩比较
人数 X S Z 限时二 实验班 215 52.4 12.0 分的口 5.14… 算 对
照班 243 46.1 14.2 限时四 实验班 215 92.4 13.5 分口算 2.7
3… 100题 对照班 243 88.6 16.3
四、实施分层成功教学
口算教学过程,在本质上是一种技能形成的过程,也一种认识的过程。这种过程只有以
明确的具体的目标 作为导向,才能顺利、有效地进行。否则,师生双方就象在黑暗中走路,
只能摸索前进。因此,我们针对以往 口算教学目标的抽象性与操作性的矛盾,以及它的高
度统一性与学生发展的差异性的矛盾突出的情况,实施了 分层成功教学。
首先,我们从学生原有的学习基础出发,对不同层次的学生提出不同的教学目标,根据
“上不封顶,下要 保底”的原则,使高层学生在达到高层目标(即优秀标准)之后,还可
向更高的目标冲击;中层学生在达到中 层目标(即良好标准)之后,还可向高层目标挺进;
低层学生在达到基本目标(即及格标准)之后,还允许他 们通过多次练习逐步达到中层或
高层目标。我们实施的分层教学目标(见表3)的这种层次性与激励性,既可 使高层学生
腾飞,也能使低层学生起跳,使每个学生都体验到成功的愉悦。一般经一周左右的口算训练,
达到 高层目标的人数将迅速增加,达到基本目标的人数将迅速减少,并最终消失。例如,
1994年我校的215 名二年级学生在经过十多次分层成功教学的“达标训练”后,表
内乘法口算口答水平的优秀率就由原来的13 .2%提高到94.3%,其余5.7%的
学生也达到了良好标准。
表3 表内乘除法口算能力的量化标准 项目 口算口答(限时一分) 口算笔答(限时一
分)
及格标准 良好标准 优秀标准 及格标准 良好标准 优秀标准 表内乘12—19 20
—29 30及 10—17 18—24 25及 除法 以上 以上
其次,我们及时发挥分层教学目标的反馈功能,使每一个学生明确下一步努力的方向与
行动目标,逐步引 导他们学会正确评价自己的学习成绩。例如,在“短期集中训练”时,
每张练习卷的开始都印有这样的一段话 :“该生()分内算对( )题,比上一次( ),已
达到( )标准,希望进一步努力,争取更好成绩。” 括号内由教师根据学生的练习情况,
并对照口算能力的量化标准填写。每次练习后,引导学生从自己是否达到 预期标准,离预
期标准相差多少,这次练习是进步还是退步等几方面,对自己的学习作出正确的评价。这样
评 价,提供的反馈信息多,产生的动机强度大,口算教学的效果十分显著。我们曾在19
92年的表内乘除法“ 短期集中训练”实验中,让甲、乙两班学生所做的每张练习卷上都
打印如上述的“一段话”,并注重及时反馈 ,而让丙、丁两班学生所做的每张练习卷上不打
印这“一段话”,仅作一般性的批改。经过这样的六次“集训 ”之后,甲、乙两班学生的口
算笔答成绩十分显著地优于丙、丁两班(P<0.01)。这表明在分层成功教 学中,多种
反馈方式时的及时和综合运用,是大幅度提高学生口算成绩的十分重要的原因。
五、利用回归分析法进行预测和控制
为了探求表内乘除法“短期集中训练”的合理次数,我们曾从六个实验班中排出高、中、
低三层学生各一 个,对他们进行了长达20次的“集训”。下表就是这18个学生20次“集
训”的平均成绩。
表4 18个学生集中训练次数与相应的口算平均成绩 训练次数 限时一分钟做对题数
训练次数 限时一分钟做对题数 (X) (Y) (X) (Y)
1 18.1 11 33.1
2 20.0 12 32.8
3 21.5 13 35.3
4 23.3 14 34.1
5 25.5 15 35.7
6 27.9 16 35.4
7 30.1 17 35.8
8 32.9 18 36.9
9 31.2 19 37.2
10 32.8 20 36.8
在表4中可以看出学生在1—8次集中训练时进步较快,在9—20次时进步缓慢,有
时还有下降。我们 认为经过6次左右的集训后,绝大部分学生口算笔答的能力都达到25
题或以上的水平。个别学生仍有困难, 可加强个别训练,不宜搞一刀切。
根据表4中的数据,我们尝试用回归分析法建立集中训练次数与相应的口算能力关系的
数学表达式,以预 测和控制实验中的重要变量。
作散点图后,从图中看出可以直接用线性回归一试:
(附图 {图})
这就得到了回归直线方程y=20.85+0.95x,经相关性检验,证实直线回归
是十分显著的(P <0.01)。
建立回归方程的目的是预测和控制。例如,某班学生进行了6次表内乘除法的集中训练,
即x[,0]= 6,则根据上面的方程可以算出:y[,0]=a+b,x[,0]≈2
6.55,即每分钟大约可以算27 题。如果还要知道预测的精度和范围,可以查(n-
2)个自由度的t分布临界值表,计算出区间半径d。
(附图 {图})
也就是说,如果某班学生进行了6次集中训练,那么他们限时一分的口算笔答平均成绩
将在23题至31 题之间,置信度是90%。例如,1994年我校的四个实验班的限时
一分的口算平均成绩基本上都落在这个 预测范围之内。
至于控制问题,实际上是预报问题的反问题,即给出了对y[,0]的要求,反过去找
满足这种要求的的 相应的x[,0]的范围。例如,我们希望学生能达到每分口算25题
的水平,那利用上面的回归方程,通过 相应的计算,就可以知道大约需要进行4次左右的
集中训练。这就可以避免盲目地增加训练次数,加重学生的 负担了。
六、口算能力与其它数学能力的相关性分析
我们在以往的数学教学中发现,有些口算能力特别强的学生,他们的其它数学能力(如
概括能力、推理能 力、解答应用题的能力等,以下简称其他数学能力)并不特别强,甚至
比较弱。例如,我校曾在1983年作 过的表内乘除口算能力与其它数学能力的相关性研
究中得出“口算能力特别的学生,他们的口算测试成绩与其 它数学能力测试成绩呈较低相
关现象”的结论。
自1988年以后,我校在表内乘除法口算教学中努力把意义、口算、应用题有机结合
起来教学,使这三 部分相互渗透,互促迁移,发挥整体功能,优化学生的认知结构,突出
能力与智力的培养。我们从本校与某校 的二年级学生中各选出36名表内乘除法口算能力
最强的学生进行了数学能力测试,结果我校的36名学生的 口算测试成绩与其它数学能力
测试成绩的相关系数r[,1]=0.68(P<0.01),某校的36名学 生两者的相
关系数r[,2]=0.32(P<0.01)。两校学生的两者相关系数r[,1]与r
[,2 ]之间存在着显著差异(P<0.05)。测试结果表明:我校学生的口算能力与其
它数学能力的相关程度较 某校为高,并且我校学生在概括能力、推理能力、解答应用题能
力等方面均明显优于某校。
从表内乘除法口算能力与其它数学能力的相关性分析中,给我们的启示是:
第一,学生的口算能力的潜力是很大的,训练与不训练大不一样,训练得合理与不合理
更大不一样,但不 能片面追求口算能力。否则,会使教学精力过多地集中在口算上,势必
削弱其它数学能力的培养。
第二,对于口算能力同样强的学生来说,不仅他们为此所用的时间不同,而且他们的其
它数学能力也不同 。关键是需要改进口算教学的方法,在塑造学生的认知结构与发展他们
的数学思维上下功夫。
第三,在口算教学中必须研究学生如何学的心理活动,在学生发展可能性的基础上,改
革教材与教法,努 力体现教学要主动促进学生发展的现代教学观,从而加速学生智能的均
衡发展。
参考资料:
潘菽主编:《教育心理学》,人民教育出版社,1980年版。
B.A.克鲁切茨基:《中小学数学能力心理学》,教育科学出版社,1984年版。
赵裕春主编:《小学生数学能力的调查与评价(低年级)》,教育科学出版社,1987
年版。
高中各年级课程推荐
|
||||
年级
|
学期
|
课程名称
|
课程试听
|
|
高一 |
高一(上)、(下)同步复习
|
语文 | ||
英语 | ||||
数学 | ||||
数学(期中串讲) | ||||
数学(期末串讲) | ||||
数学拔高 | ||||
物理 | ||||
化学 | ||||
生物(一) | ||||
地理 | ||||
历史 | ||||
政治 | ||||
高中专项突破课
|
语文写作 | |||
英语阅读理解 | ||||
英语写作 | ||||
英语完形填空 | ||||
物理功和能量 | ||||
高二 |
高二(上)、(下)同步复习
|
语文 | ||
英语 | ||||
数学(理) | ||||
数学拔高(理) | ||||
数学(文) | ||||
数学拔高(文) | ||||
物理 | ||||
数学(期中串讲) | ||||
数学(期末串讲)(理) | ||||
数学(期末串讲)(文) | ||||
化学 | ||||
生物(一) | ||||
生物(二) | ||||
生物(三) | ||||
地理 | ||||
历史 | ||||
政治 | ||||
高三 |
高考第一轮复习
|
语文 | ||
英语 | ||||
数学(理) | ||||
数学拔高(理) | ||||
数学(文) | ||||
数学拔高(文) | ||||
物理 | ||||
物理拔高 | ||||
化学 | ||||
生物 | ||||
地理 | ||||
政治 | ||||
历史(韩校版) | ||||
历史(李晓风版) | ||||
高考第二轮复习
|
数学(理) | |||
数学(文) | ||||
英语 | ||||
物理 | ||||
化学 | ||||
地理 | ||||
高考第三轮冲刺串讲
|
语数英串讲(理) | |||
语数英串讲(文) | ||||
物化生串讲 | ||||
史地政串讲 | ||||
高考试题精讲
|
数学(理) | |||
英语 | ||||
化学 | ||||
物理 | ||||
2021高考研究2021高考策略(理) | ||||
2021高考研究2021高考策略(文) | ||||
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。